Found problems: 3349
1985 ITAMO, 4
A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly 1/1985.
[asy]
size(200);
pair A=(0,1), B=(1,1), C=(1,0), D=origin;
draw(A--B--C--D--A--(1,1/6));
draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1));
pair point=( 0.5 , 0.5 );
//label("$A$", A, dir(point--A));
//label("$B$", B, dir(point--B));
//label("$C$", C, dir(point--C));
//label("$D$", D, dir(point--D));
label("$1/n$", (11/12,1), N, fontsize(9));[/asy]
2020 Jozsef Wildt International Math Competition, W37
For all $x>0$ prove
$$\frac{\sin^2x-x}{\ln\left(\frac{\sin^2x}x\right)^{\sqrt x}}+\frac{\cos^2x-x}{\ln\left(\frac{\cos^2x}x\right)^{\sqrt x}}>|\sin x|+|\cos x|$$
[i]Proposed by Pirkulyiev Rovsen[/i]
2001 India National Olympiad, 5
$ABC$ is a triangle. $M$ is the midpoint of $BC$. $\angle MAB = \angle C$, and $\angle MAC = 15^{\circ}$. Show that $\angle AMC$ is obtuse. If $O$ is the circumcenter of $ADC$, show that $AOD$ is equilateral.
2004 Harvard-MIT Mathematics Tournament, 1
Let $f(x)=\sin(\sin(x))$. Evaluate \[ \lim_{h \to 0} \dfrac {f(x+h)-f(h)}{x} \] at $x=\pi$.
1993 Taiwan National Olympiad, 4
In the Cartesian plane, let $C$ be a unit circle with center at origin $O$. For any point $Q$ in the plane distinct from $O$, define $Q'$ to be the intersection of the ray $OQ$ and the circle $C$. Prove that for any $P\in C$ and any $k\in\mathbb{N}$ there exists a lattice point $Q(x,y)$ with $|x|=k$ or $|y|=k$ such that $PQ'<\frac{1}{2k}$.
2009 IMO Shortlist, 6
Let the sides $AD$ and $BC$ of the quadrilateral $ABCD$ (such that $AB$ is not parallel to $CD$) intersect at point $P$. Points $O_1$ and $O_2$ are circumcenters and points $H_1$ and $H_2$ are orthocenters of triangles $ABP$ and $CDP$, respectively. Denote the midpoints of segments $O_1H_1$ and $O_2H_2$ by $E_1$ and $E_2$, respectively. Prove that the perpendicular from $E_1$ on $CD$, the perpendicular from $E_2$ on $AB$ and the lines $H_1H_2$ are concurrent.
[i]Proposed by Eugene Bilopitov, Ukraine[/i]
2012 USAMTS Problems, 3
In quadrilateral $ABCD$, $\angle DAB=\angle ABC=110^{\circ}$, $\angle BCD=35^{\circ}$, $\angle CDA=105^{\circ}$, and $AC$ bisects $\angle DAB$. Find $\angle ABD$.
2010 Paenza, 3
Let $(x_n)_{n \in \mathbb{N}}$ be the sequence defined as $x_n = \sin(2 \pi n! e)$ for all $n \in \mathbb{N}$. Compute $\lim_{n \to \infty} x_n$.
2008 Polish MO Finals, 3
In a convex pentagon $ ABCDE$ in which $ BC\equal{}DE$ following equalities hold:
\[ \angle ABE \equal{}\angle CAB \equal{}\angle AED\minus{}90^{\circ},\qquad \angle ACB\equal{}\angle ADE\]
Show that $ BCDE$ is a parallelogram.
1971 IMO Longlists, 24
Let $A, B,$ and $C$ denote the angles of a triangle. If $\sin^2 A + \sin^2 B + \sin^2 C = 2$, prove that the triangle is right-angled.
2005 Today's Calculation Of Integral, 24
Find the minimum value of $\int_0^{\pi} (x-y)^2 (\sin x)|\cos x|dx$.
2005 Putnam, A5
Evaluate $\int_0^1\frac{\ln(x+1)}{x^2+1}\,dx.$
1972 IMO Longlists, 4
You have a triangle, $ABC$. Draw in the internal angle trisectors. Let the two trisectors closest to $AB$ intersect at $D$, the two trisectors closest to $BC$ intersect at $E$, and the two closest to $AC$ at $F$. Prove that $DEF$ is equilateral.
1964 AMC 12/AHSME, 22
Given parallelogram $ABCD$ with $E$ the midpoint of diagonal $BD$. Point $E$ is connected to a point $F$ in $DA$ so that $DF=\frac{1}{3}DA$. What is the ratio of the area of triangle $DFE$ to the area of quadrilateral $ABEF$?
$ \textbf{(A)}\ 1:2 \qquad\textbf{(B)}\ 1:3 \qquad\textbf{(C)}\ 1:5 \qquad\textbf{(D)}\ 1:6 \qquad\textbf{(E)}\ 1:7 $
2013 Today's Calculation Of Integral, 871
Define sequences $\{a_n\},\ \{b_n\}$ by
\[a_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}d\theta,\ b_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}\cos \theta d\theta\ (n=1,\ 2,\ 3,\ \cdots).\]
(1) Find $b_n$.
(2) Prove that for each $n$, $b_n\leq a_n\leq \frac 2{\sqrt{3}}b_n.$
(3) Find $\lim_{n\to\infty} \frac 1{n}\ln (na_n).$
2002 AMC 12/AHSME, 22
Triangle $ ABC$ is a right triangle with $ \angle ACB$ as its right angle, $ m\angle ABC \equal{} 60^\circ$, and $ AB \equal{} 10$. Let $ P$ be randomly chosen inside $ \triangle ABC$, and extend $ \overline{BP}$ to meet $ \overline{AC}$ at $ D$. What is the probability that $ BD > 5\sqrt2$?
[asy]import math;
unitsize(4mm);
defaultpen(fontsize(8pt)+linewidth(0.7));
dotfactor=4;
pair A=(10,0);
pair C=(0,0);
pair B=(0,10.0/sqrt(3));
pair P=(2,2);
pair D=extension(A,C,B,P);
draw(A--C--B--cycle);
draw(B--D);
dot(P);
label("A",A,S);
label("D",D,S);
label("C",C,S);
label("P",P,NE);
label("B",B,N);[/asy]
$ \textbf{(A)}\ \frac {2 \minus{} \sqrt2}{2} \qquad \textbf{(B)}\ \frac {1}{3} \qquad \textbf{(C)}\ \frac {3 \minus{} \sqrt3}{3} \qquad \textbf{(D)}\ \frac {1}{2} \qquad \textbf{(E)}\ \frac {5 \minus{} \sqrt5}{5}$
1965 IMO Shortlist, 1
Determine all values of $x$ in the interval $0 \leq x \leq 2\pi$ which satisfy the inequality \[ 2 \cos{x} \leq \sqrt{1+\sin{2x}}-\sqrt{1-\sin{2x}} \leq \sqrt{2}. \]
2008 All-Russian Olympiad, 6
The incircle of a triangle $ABC$ touches the side $AB$ and $AC$ at respectively at $X$ and $Y$. Let $K$ be the midpoint of the arc $\widehat{AB}$ on the circumcircle of $ABC$. Assume that $XY$ bisects the segment $AK$. What are the possible measures of angle $BAC$?
2000 Polish MO Finals, 1
Find number of solutions in non-negative reals to the following equations:
\begin{eqnarray*}x_1 + x_n ^2 = 4x_n \\ x_2 + x_1 ^2 = 4x_1 \\ ... \\ x_n + x_{n-1}^2 = 4x_{n-1} \end{eqnarray*}
2012 Indonesia TST, 1
Suppose $P(x,y)$ is a homogenous non-constant polynomial with real coefficients such that $P(\sin t, \cos t) = 1$ for all real $t$. Prove that $P(x,y) = (x^2+y^2)^k$ for some positive integer $k$.
(A polynomial $A(x,y)$ with real coefficients and having a degree of $n$ is homogenous if it is the sum of $a_ix^iy^{n-i}$ for some real number $a_i$, for all integer $0 \le i \le n$.)
2011 India IMO Training Camp, 1
Let $ABC$ be an acute-angled triangle. Let $AD,BE,CF$ be internal bisectors with $D, E, F$ on $BC, CA, AB$ respectively. Prove that
\[\frac{EF}{BC}+\frac{FD}{CA}+\frac{DE}{AB}\geq 1+\frac{r}{R}\]
2007 USAMO, 6
Let $ABC$ be an acute triangle with $\omega,S$, and $R$ being its incircle, circumcircle, and circumradius, respectively. Circle $\omega_{A}$ is tangent internally to $S$ at $A$ and tangent externally to $\omega$. Circle $S_{A}$ is tangent internally to $S$ at $A$ and tangent internally to $\omega$. Let $P_{A}$ and $Q_{A}$ denote the centers of $\omega_{A}$ and $S_{A}$, respectively. Define points $P_{B}, Q_{B}, P_{C}, Q_{C}$ analogously. Prove that
\[8P_{A}Q_{A}\cdot P_{B}Q_{B}\cdot P_{C}Q_{C}\leq R^{3}\; , \]
with equality if and only if triangle $ABC$ is equilateral.
1982 Swedish Mathematical Competition, 6
Show that
\[
(2a-1) \sin x + (1-a) \sin(1-a)x \geq 0
\]
for $0 \leq a \leq 1$ and $0 \leq x \leq \pi$.
1985 Iran MO (2nd round), 3
Find the angle between two common sections of the page $2x+y-z=0$ and the cone $4x^2-y^2+3z^2=0.$
2001 Brazil National Olympiad, 3
$ABC$ is a triangle
$E, F$ are points in $AB$, such that $AE = EF = FB$
$D$ is a point at the line $BC$ such that $ED$ is perpendiculat to $BC$
$AD$ is perpendicular to $CF$.
The angle CFA is the triple of angle BDF. ($3\angle BDF = \angle CFA$)
Determine the ratio $\frac{DB}{DC}$.
%Edited!%