This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2011 Morocco National Olympiad, 4

The diagonals of a trapezoid $ ABCD $ whose bases are $ [AB] $ and $ [CD] $ intersect at $P.$ Prove that \[S_{PAB} + S_{PCD} > S_{PBC} + S_{PDA},\] Where $S_{XYZ} $ denotes the area of $\triangle XYZ $.

2004 All-Russian Olympiad Regional Round, 10.1

The sum of positive numbers $a, b, c$ is equal to $\pi/2$. Prove that $$\cos a + \cos b + \cos c > \sin a + \sin b + \sin c.$$

2011 Today's Calculation Of Integral, 683

Evaluate $\int_0^{\frac 12} (x+1)\sqrt{1-2x^2}\ dx$. [i]2011 Kyoto University entrance exam/Science, Problem 1B[/i]

2013 Gheorghe Vranceanu, 1

Find the pairs of functions $ f,g:\mathbb{R}\longrightarrow\mathbb{R} $ with $ f $ continuous, $ g $ differentiable and satisfying: $$ -\sin g(x) + \int \cos f(x)dx =\cos g(x) +\int \sin f(x)dx $$

1988 IMO Longlists, 55

Suppose $\alpha_i > 0, \beta_i > 0$ for $1 \leq i \leq n, n > 1$ and that \[ \sum^n_{i=1} \alpha_i = \sum^n_{i=1} \beta_i = \pi. \] Prove that \[ \sum^n_{i=1} \frac{\cos(\beta_i)}{\sin(\alpha_i)} \leq \sum^n_{i=1} \cot(\alpha_i). \]

2010 Contests, 2

Consider a triangle $ABC$ with $BC = 3$. Choose a point $D$ on $BC$ such that $BD = 2$. Find the value of \[AB^2 + 2AC^2 - 3AD^2.\]

1966 IMO Shortlist, 10

How many real solutions are there to the equation $x = 1964 \sin x - 189$ ?

2005 AIME Problems, 6

Let $P$ be the product of the nonreal roots of $x^4-4x^3+6x^2-4x=2005$. Find $\lfloor P\rfloor$.

2012 India IMO Training Camp, 1

A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.

1990 Vietnam Team Selection Test, 2

Given a tetrahedron such that product of the opposite edges is $ 1$. Let the angle between the opposite edges be $ \alpha$, $ \beta$, $ \gamma$, and circumradii of four faces be $ R_1$, $ R_2$, $ R_3$, $ R_4$. Prove that \[ \sin^2\alpha \plus{} \sin^2\beta \plus{} \sin^2\gamma\ge\frac {1}{\sqrt {R_1R_2R_3R_4}} \]

2007 Harvard-MIT Mathematics Tournament, 23

In triangle $ABC$, $\angle ABC$ is obtuse. Point $D$ lies on side $AC$ such that $\angle ABD$ is right, and point $E$ lies on side $AC$ between $A$ and $D$ such that $BD$ bisects $\angle EBC$. Find $CE$ given that $AC=35$, $BC=7$, and $BE=5$.

1979 Spain Mathematical Olympiad, 5

Calculate the definite integral $$\int_2^4 \sin ((x-3)^3) dx$$

1949-56 Chisinau City MO, 49

Prove the identity: $$\cos \frac{\pi}{7} \cdot \cos \frac{4\pi}{7} \cdot \cos \frac{5\pi}{7} = \frac{1}{8}$$

2013 Canadian Mathematical Olympiad Qualification Repechage, 8

Let $\triangle ABC$ be an acute-angled triangle with orthocentre $H$ and circumcentre $O$. Let $R$ be the radius of the circumcircle. \begin{align*} \text{Let }\mathit{A'}\text{ be the point on }\mathit{AO}\text{ (extended if necessary) for which }\mathit{HA'}\perp\mathit{AO}. \\ \text{Let }\mathit{B'}\text{ be the point on }\mathit{BO}\text{ (extended if necessary) for which }\mathit{HB'}\perp\mathit{BO}. \\ \text{Let }\mathit{C'}\text{ be the point on }\mathit{CO}\text{ (extended if necessary) for which }\mathit{HC'}\perp\mathit{CO}.\end{align*} Prove that $HA'+HB'+HC'<2R$ (Note: The orthocentre of a triangle is the intersection of the three altitudes of the triangle. The circumcircle of a triangle is the circle passing through the triangle’s three vertices. The circummcentre is the centre of the circumcircle.)

2011 India IMO Training Camp, 1

Let $ABC$ be a triangle each of whose angles is greater than $30^{\circ}$. Suppose a circle centered with $P$ cuts segments $BC$ in $T,Q; CA$ in $K,L$ and $AB$ in $M,N$ such that they are on a circle in counterclockwise direction in that order.Suppose further $PQK,PLM,PNT$ are equilateral. Prove that: $a)$ The radius of the circle is $\frac{2abc}{a^2+b^2+c^2+4\sqrt{3}S}$ where $S$ is area. $b) a\cdot AP=b\cdot BP=c\cdot PC.$

2006 Romania National Olympiad, 2

Prove that for all $\displaystyle a,b \in \left( 0 ,\frac{\pi}{4} \right)$ and $\displaystyle n \in \mathbb N^\ast$ we have \[ \frac{\sin^n a + \sin^n b}{\left( \sin a + \sin b \right)^n} \geq \frac{\sin^n 2a + \sin^n 2b}{\left( \sin 2a + \sin 2b \right)^n} . \]

2009 Today's Calculation Of Integral, 486

Let $ H$ be the piont of midpoint of the cord $ PQ$ that is on the circle centered the origin $ O$ with radius $ 1.$ Suppose the length of the cord $ PQ$ is $ 2\sin \frac {t}{2}$ for the angle $ t\ (0\leq t\leq \pi)$ that is formed by half-ray $ OH$ and the positive direction of the $ x$ axis. Answer the following questions. (1) Express the coordiante of $ H$ in terms of $ t$. (2) When $ t$ moves in the range of $ 0\leq t\leq \pi$, find the minimum value of $ x$ coordinate of $ H$. (3) When $ t$ moves in the range of $ 0\leq t\leq \frac {\pi}{2}$, find the area $ S$ of the region bounded by the curve drawn by the point $ H$ and the $ x$ axis and the $ y$ axis.

Cono Sur Shortlist - geometry, 2005.G4.2

Let $ABC$ be an acute-angled triangle and let $AN$, $BM$ and $CP$ the altitudes with respect to the sides $BC$, $CA$ and $AB$, respectively. Let $R$, $S$ be the pojections of $N$ on the sides $AB$, $CA$, respectively, and let $Q$, $W$ be the projections of $N$ on the altitudes $BM$ and $CP$, respectively. (a) Show that $R$, $Q$, $W$, $S$ are collinear. (b) Show that $MP=RS-QW$.

2009 AIME Problems, 10

Four lighthouses are located at points $ A$, $ B$, $ C$, and $ D$. The lighthouse at $ A$ is $ 5$ kilometers from the lighthouse at $ B$, the lighthouse at $ B$ is $ 12$ kilometers from the lighthouse at $ C$, and the lighthouse at $ A$ is $ 13$ kilometers from the lighthouse at $ C$. To an observer at $ A$, the angle determined by the lights at $ B$ and $ D$ and the angle determined by the lights at $ C$ and $ D$ are equal. To an observer at $ C$, the angle determined by the lights at $ A$ and $ B$ and the angle determined by the lights at $ D$ and $ B$ are equal. The number of kilometers from $ A$ to $ D$ is given by $ \displaystyle\frac{p\sqrt{r}}{q}$, where $ p$, $ q$, and $ r$ are relatively prime positive integers, and $ r$ is not divisible by the square of any prime. Find $ p\plus{}q\plus{}r$,

1978 Czech and Slovak Olympiad III A, 3

Let $\alpha,\beta,\gamma$ be angles of a triangle. Determine all real triplets $x,y,z$ satisfying the system \begin{align*} x\cos\beta+\frac1z\cos\alpha &=1, \\ y\cos\gamma+\frac1x\cos\beta &=1, \\ z\cos\alpha+\frac1y\cos\gamma &=1. \end{align*}

1999 Harvard-MIT Mathematics Tournament, 6

Evaluate $\dfrac{d}{dx}\left(\sin x - \dfrac{4}{3}\sin^3 x\right)$ when $x=15$.

1997 APMO, 3

Let $ABC$ be a triangle inscribed in a circle and let \[ l_a = \frac{m_a}{M_a} \ , \ \ l_b = \frac{m_b}{M_b} \ , \ \ l_c = \frac{m_c}{M_c} \ , \] where $m_a$,$m_b$, $m_c$ are the lengths of the angle bisectors (internal to the triangle) and $M_a$, $M_b$, $M_c$ are the lengths of the angle bisectors extended until they meet the circle. Prove that \[ \frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C} \geq 3 \] and that equality holds iff $ABC$ is an equilateral triangle.

1969 IMO Shortlist, 37

$(HUN 4)$IMO2 If $a_1, a_2, . . . , a_n$ are real constants, and if $y = \cos(a_1 + x) +2\cos(a_2+x)+ \cdots+ n \cos(a_n + x)$ has two zeros $x_1$ and $x_2$ whose difference is not a multiple of $\pi$, prove that $y = 0.$

2004 National Olympiad First Round, 13

If the tangents of all interior angles of a triangle are integers, what is the sum of these integers? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ \text{None of above} $

2023 Princeton University Math Competition, 10

10. The sum $\sum_{k=1}^{2020} k \cos \left(\frac{4 k \pi}{4041}\right)$ can be written in the form $$ \frac{a \cos \left(\frac{p \pi}{q}\right)-b}{c \sin ^{2}\left(\frac{p \pi}{q}\right)} $$ where $a, b, c$ are relatively prime positive integers and $p, q$ are relatively prime positive integers where $p<q$. Determine $a+b+c+p+q$.