Found problems: 3349
2004 India IMO Training Camp, 2
Show that the only solutions of te equation \[ p^{k} + 1 = q^{m} \], in positive integers $k,q,m > 1$ and prime $p$ are
(i) $(p,k,q,m) = (2,3,3,2)$
(ii) $k=1 , q=2,$and $p$ is a prime of the form $2^{m} -1$, $m > 1 \in \mathbb{N}$
1961 IMO Shortlist, 3
Solve the equation $\cos^n{x}-\sin^n{x}=1$ where $n$ is a natural number.
1998 AIME Problems, 13
If $\{a_1,a_2,a_3,\ldots,a_n\}$ is a set of real numbers, indexed so that $a_1<a_2<a_3<\cdots<a_n,$ its complex power sum is defined to be $a_1i+a_2i^2+a_3i^3+\cdots+a_ni^n,$ where $i^2=-1.$ Let $S_n$ be the sum of the complex power sums of all nonempty subsets of $\{1,2,\ldots,n\}.$ Given that $S_8=-176-64i$ and $S_9=p+qi,$ were $p$ and $q$ are integers, find $|p|+|q|.$
2013 F = Ma, 20
A simple pendulum experiment is constructed from a point mass $m$ attached to a pivot by a massless rod of length $L$ in a constant gravitational field. The rod is released from an angle $\theta_0 < \frac{\pi}{2}$ at rest and the period of motion is found to be $T_0$. Ignore air resistance and friction.
What is the maximum value of the tension in the rod?
$\textbf{(A) } mg\\
\textbf{(B) } 2mg\\
\textbf{(C) } mL\theta_0/T_0^2\\
\textbf{(D) } mg \sin \theta_0\\
\textbf{(E) } mg(3 - 2 \cos \theta_0)$
1998 Czech and Slovak Match, 5
In a triangle $ABC$, $T$ is the centroid and $ \angle TAB = \angle ACT$. Find the maximum possible value of $sin \angle CAT +sin \angle CBT$.
1994 Canada National Olympiad, 5
Let $ABC$ be an acute triangle. Let $AD$ be the altitude on $BC$, and let $H$ be any interior point on $AD$. Lines $BH,CH$, when extended, intersect $AC,AB$ at $E,F$ respectively. Prove that $\angle EDH=\angle FDH$.
VII Soros Olympiad 2000 - 01, 10.2
Let $a$ and $ b$ be acute corners. Prove that if $\sin a$, $\sin b$, and $\sin (a + b)$ are rational numbers, then $\cos a$, $\cos b$, and $\cos (a + b)$ are also rational numbers.
1980 AMC 12/AHSME, 23
Line segments drawn from the vertex opposite the hypotenuse of a right triangle to the points trisecting the hypotenuse have lengths $\sin x$ and $\cos x$, where $x$ is a real number such that $0<x<\frac{\pi}2$. The length of the hypotenuse is
$\text{(A)} \ \frac 43 \qquad \text{(B)} \ \frac 32 \qquad \text{(C)} \ \frac{3\sqrt{5}}{5} \qquad \text{(D)} \ \frac{2\sqrt{5}}{3} \qquad \text{(E)} \ \text{not uniquely determined}$
2001 National Olympiad First Round, 25
The circumradius of acute triangle $ABC$ is twice of the distance of its circumcenter to $AB$. If $|AC|=2$ and $|BC|=3$, what is the altitude passing through $C$?
$
\textbf{(A)}\ \sqrt {14}
\qquad\textbf{(B)}\ \dfrac{3}{7}\sqrt{21}
\qquad\textbf{(C)}\ \dfrac{4}{7}\sqrt{21}
\qquad\textbf{(D)}\ \dfrac{1}{2}\sqrt{21}
\qquad\textbf{(E)}\ \dfrac{2}{3}\sqrt{14}
$
2000 CentroAmerican, 3
Let $ ABCDE$ be a convex pentagon. If $ P$, $ Q$, $ R$ and $ S$ are the respective centroids of the triangles $ ABE$, $ BCE$, $ CDE$ and $ DAE$, show that $ PQRS$ is a parallelogram and its area is $ 2/9$ of that of $ ABCD$.
2010 Today's Calculation Of Integral, 642
Evaluate
\[\int_0^{\frac{\pi}{6}} \frac{(\tan ^ 2 2x)\sqrt{\cos 2x}+2}{(\cos ^ 2 x)\sqrt{\cos 2x}}dx.\]
Own
1998 Romania Team Selection Test, 1
We are given an isosceles triangle $ABC$ such that $BC=a$ and $AB=BC=b$. The variable points $M\in (AC)$ and $N\in (AB)$ satisfy $a^2\cdot AM \cdot AN = b^2 \cdot BN \cdot CM$. The straight lines $BM$ and $CN$ intersect in $P$. Find the locus of the variable point $P$.
[i]Dan Branzei[/i]
2014 International Zhautykov Olympiad, 3
Four segments divide a convex quadrilateral into nine quadrilaterals. The points of intersections of these segments lie on the diagonals of the quadrilateral (see figure). It is known that the quadrilaterals 1, 2, 3, 4 admit inscribed circles. Prove that the quadrilateral 5 also has an inscribed circle.
[asy]
pair A,B,C,D,E,F,G,H,I,J,K,L;
A=(-4.0,4.0);B=(-1.06,4.34);C=(-0.02,4.46);D=(4.14,4.93);E=(3.81,0.85);F=(3.7,-0.42);
G=(3.49,-3.05);H=(1.37,-2.88);I=(-1.46,-2.65);J=(-2.91,-2.52);K=(-3.14,-1.03);L=(-3.61,1.64);
draw(A--D);draw(D--G);draw(G--J);draw(J--A);
draw(A--G);draw(D--J);
draw(B--I);draw(C--H);draw(E--L);draw(F--K);
pair R,S,T,U,V;
R=(-2.52,2.56);S=(1.91,2.58);T=(-0.63,-0.11);U=(-2.37,-1.94);V=(2.38,-2.06);
label("1",R,N);label("2",S,N);label("3",T,N);label("4",U,N);label("5",V,N);
[/asy]
[i]Proposed by Nairi M. Sedrakyan, Armenia[/i]
2012 Today's Calculation Of Integral, 792
Answer the following questions:
(1) Let $a$ be positive real number. Find $\lim_{n\to\infty} (1+a^{n})^{\frac{1}{n}}.$
(2) Evaluate $\int_1^{\sqrt{3}} \frac{1}{x^2}\ln \sqrt{1+x^2}dx.$
35 points
2006 Putnam, A1
Find the volume of the region of points $(x,y,z)$ such that
\[\left(x^{2}+y^{2}+z^{2}+8\right)^{2}\le 36\left(x^{2}+y^{2}\right). \]
2005 Today's Calculation Of Integral, 16
Calculate the following indefinite integrals.
[1] $\int \sin (\ln x)dx$
[2] $\int \frac{x+\sin ^ 2 x}{x\sin ^ 2 x}dx$
[3] $\int \frac{x^3}{x^2+1}dx$
[4] $\int \frac{x^2}{\sqrt{2x-1}}dx$
[5] $\int \frac{x+\cos 2x +1}{x\cos ^ 2 x}dx$
1958 AMC 12/AHSME, 36
The sides of a triangle are $ 30$, $ 70$, and $ 80$ units. If an altitude is dropped upon the side of length $ 80$, the larger segment cut off on this side is:
$ \textbf{(A)}\ 62\qquad
\textbf{(B)}\ 63\qquad
\textbf{(C)}\ 64\qquad
\textbf{(D)}\ 65\qquad
\textbf{(E)}\ 66$
2024 AMC 12/AHSME, 23
What is the value of \[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?\]
$\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84$
1988 IMO Longlists, 84
A point $ M$ is chosen on the side $ AC$ of the triangle $ ABC$ in such a way that the radii of the circles inscribed in the triangles $ ABM$ and $ BMC$ are equal. Prove that
\[ BM^{2} \equal{} X \cot \left( \frac {B}{2}\right)
\]
where X is the area of triangle $ ABC.$
2008 District Olympiad, 4
Let $ ABCD$ be a cyclic quadrilater. Denote $ P\equal{}AD\cap BC$ and $ Q\equal{}AB \cap CD$. Let $ E$ be the fourth vertex of the parallelogram $ ABCE$ and $ F\equal{}CE\cap PQ$. Prove that $ D,E,F$ and $ Q$ lie on the same circle.
2007 Iran MO (3rd Round), 3
Let $ I$ be incenter of triangle $ ABC$, $ M$ be midpoint of side $ BC$, and $ T$ be the intersection point of $ IM$ with incircle, in such a way that $ I$ is between $ M$ and $ T$. Prove that $ \angle BIM\minus{}\angle CIM\equal{}\frac{3}2(\angle B\minus{}\angle C)$, if and only if $ AT\perp BC$.
2015 AMC 12/AHSME, 24
Rational numbers $a$ and $b$ are chosen at random among all rational numbers in the interval $[0,2)$ that can be written as fractions $\tfrac nd$ where $n$ and $d$ are integers with $1\leq d\leq 5$. What is the probability that \[(\cos(a\pi)+i\sin(b\pi))^4\] is a real number?
$\textbf{(A) }\dfrac3{50}\qquad\textbf{(B) }\dfrac4{25}\qquad\textbf{(C) }\dfrac{41}{200}\qquad\textbf{(D) }\dfrac6{25}\qquad\textbf{(E) }\dfrac{13}{50}$
1998 Harvard-MIT Mathematics Tournament, 5
Evaluate $\displaystyle\lim_{x\to 1}x^{\dfrac{x}{\sin(1-x)}}$.
1966 IMO Shortlist, 25
Prove that \[\tan 7 30^{\prime }=\sqrt{6}+\sqrt{2}-\sqrt{3}-2.\]
2013 Saint Petersburg Mathematical Olympiad, 1
Find the minimum positive noninteger root of $ \sin x=\sin \lfloor x \rfloor $.
F. Petrov