Found problems: 3349
2021 Romania National Olympiad, 2
Let $P_0, P_1,\ldots, P_{2021}$ points on the unit circle of centre $O$ such that for each $n\in \{1,2,\ldots, 2021\}$ the length of the arc from $P_{n-1}$ to $P_n$ (in anti-clockwise direction) is in the interval $\left[\frac{\pi}2,\pi\right]$. Determine the maximum possible length of the vector:
\[\overrightarrow{OP_0}+\overrightarrow{OP_1}+\ldots+\overrightarrow{OP_{2021}}.\]
[i]Mihai Iancu[/i]
2013 National Olympiad First Round, 9
Let $ABC$ be a triangle with $|AB|=18$, $|AC|=24$, and $m(\widehat{BAC}) = 150^\circ$. Let $D$, $E$, $F$ be points on sides $[AB]$, $[AC]$, $[BC]$, respectively, such that $|BD|=6$, $|CE|=8$, and $|CF|=2|BF|$. Let $H_1$, $H_2$, $H_3$ be the reflections of the orthocenter of triangle $ABC$ over the points $D$, $E$, $F$, respectively. What is the area of triangle $H_1H_2H_3$?
$
\textbf{(A)}\ 70
\qquad\textbf{(B)}\ 72
\qquad\textbf{(C)}\ 84
\qquad\textbf{(D)}\ 96
\qquad\textbf{(E)}\ 108
$
2000 IMO Shortlist, 5
The tangents at $B$ and $A$ to the circumcircle of an acute angled triangle $ABC$ meet the tangent at $C$ at $T$ and $U$ respectively. $AT$ meets $BC$ at $P$, and $Q$ is the midpoint of $AP$; $BU$ meets $CA$ at $R$, and $S$ is the midpoint of $BR$. Prove that $\angle ABQ=\angle BAS$. Determine, in terms of ratios of side lengths, the triangles for which this angle is a maximum.
2004 USA Team Selection Test, 1
Suppose $a_1, a_2, \ldots, a_n$ and $b_1, b_2, \ldots, b_n$ are real numbers such that \[ (a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 -1)(b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 - 1) > (a_1 b_1 + a_2 b_2 + \cdots + a_n b_n - 1)^2. \] Prove that $a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 > 1$ and $b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 > 1$.
Kyiv City MO 1984-93 - geometry, 1993.10.4
Prove theat for an arbitrary triangle holds the inequality $$a \cos A+ b \cos B + c \cos C \le p ,$$ where $a, b, c$ are the sides of the triangle, $A, B, C$ are the angles, $p$ is the semiperimeter.
2013 Pan African, 3
Let $ABCDEF$ be a convex hexagon with $\angle A= \angle D$ and $\angle B=\angle E$ . Let $K$ and $L$
be the midpoints of the sides $AB$ and $DE$ respectively. Prove that the sum of the areas of triangles $FAK$, $KCB$ and $CFL$ is equal to half of the area of the hexagon if and only if
\[\frac{BC}{CD}=\frac{EF}{FA}.\]
2004 Unirea, 1
Solve in the real numbers the equation $ |\sin 3x+\cos (7\pi /2 -5x)|=2. $
2013 Canada National Olympiad, 5
Let $O$ denote the circumcentre of an acute-angled triangle $ABC$. Let point $P$ on side $AB$ be such that $\angle BOP = \angle ABC$, and let point $Q$ on side $AC$ be such that $\angle COQ = \angle ACB$. Prove that the reflection of $BC$ in the line $PQ$ is tangent to the circumcircle of triangle $APQ$.
2006 AIME Problems, 8
Hexagon $ABCDEF$ is divided into four rhombuses, $\mathcal{P, Q, R, S,}$ and $\mathcal{T,}$ as shown. Rhombuses $\mathcal{P, Q, R,}$ and $\mathcal{S}$ are congruent, and each has area $\sqrt{2006}$. Let $K$ be the area of rhombus $\mathcal{T}$. Given that $K$ is a positive integer, find the number of possible values for $K$.
[asy]
size(150);defaultpen(linewidth(0.7)+fontsize(10));
draw(rotate(45)*polygon(4));
pair F=(1+sqrt(2))*dir(180), C=(1+sqrt(2))*dir(0), A=F+sqrt(2)*dir(45), E=F+sqrt(2)*dir(-45), B=C+sqrt(2)*dir(180-45), D=C+sqrt(2)*dir(45-180);
draw(F--(-1,0)^^C--(1,0)^^A--B--C--D--E--F--cycle);
pair point=origin;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));
label("$\mathcal{P}$", intersectionpoint( A--(-1,0), F--(0,1) ));
label("$\mathcal{S}$", intersectionpoint( E--(-1,0), F--(0,-1) ));
label("$\mathcal{R}$", intersectionpoint( D--(1,0), C--(0,-1) ));
label("$\mathcal{Q}$", intersectionpoint( B--(1,0), C--(0,1) ));
label("$\mathcal{T}$", point);
dot(A^^B^^C^^D^^E^^F);[/asy]
1971 IMO Shortlist, 7
All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$.
[b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length;
[b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.
2011 USAMO, 5
Let $P$ be a given point inside quadrilateral $ABCD$. Points $Q_1$ and $Q_2$ are located within $ABCD$ such that
\[\angle Q_1BC=\angle ABP,\quad\angle Q_1CB=\angle DCP,\quad\angle Q_2AD=\angle BAP,\quad\angle Q_2DA=\angle CDP.\] Prove that $\overline{Q_1Q_2}\parallel\overline{AB}$ if and only if $\overline{Q_1Q_2}\parallel\overline{CD}$.
2003 Alexandru Myller, 4
Let $\displaystyle ABCD$ be a a convex quadrilateral and $\displaystyle O$ be a point in its interior. Let $\displaystyle a,b,c,d,e,f$ be the areas of the triangles $\displaystyle OAB,OBC,OCD,ODA,OAC,OBD$.
Prove that \[ \displaystyle \left| ac - bd \right| = ef . \]
2000 Baltic Way, 2
Given an isosceles triangle $ ABC$ with $ \angle A \equal{} 90^{\circ}$. Let $ M$ be the midpoint of $ AB$. The line passing through $ A$ and perpendicular to $ CM$ intersects the side $ BC$ at $ P$. Prove that $ \angle AMC \equal{} \angle BMP$.
2011 China Second Round Olympiad, 4
If ${\cos^5 x}-{\sin^5 x}<7({\sin^3 x}-{\cos ^3 x}) $ (for $x\in [ 0,2\pi) $), then find the range of $x$.
1992 IMO Longlists, 68
Show that the numbers $\tan \left(\frac{r \pi }{15}\right)$, where $r$ is a positive integer less than $15$ and relatively prime to $15$, satisfy
\[x^8 - 92x^6 + 134x^4 - 28x^2 + 1 = 0.\]
2014 Online Math Open Problems, 19
In triangle $ABC$, $AB=3$, $AC=5$, and $BC=7$. Let $E$ be the reflection of $A$ over $\overline{BC}$, and let line $BE$ meet the circumcircle of $ABC$ again at $D$. Let $I$ be the incenter of $\triangle ABD$. Given that $\cos ^2 \angle AEI = \frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers, determine $m+n$.
[i]Proposed by Ray Li[/i]
1992 IberoAmerican, 3
In a triangle $ABC$, points $A_{1}$ and $A_{2}$ are chosen in the prolongations beyond $A$ of segments $AB$ and $AC$, such that $AA_{1}=AA_{2}=BC$. Define analogously points $B_{1}$, $B_{2}$, $C_{1}$, $C_{2}$. If $[ABC]$ denotes the area of triangle $ABC$, show that $[A_{1}A_{2}B_{1}B_{2}C_{1}C_{2}] \geq 13 [ABC]$.
1985 Vietnam Team Selection Test, 3
Does there exist a triangle $ ABC$ satisfying the following two conditions:
(a) ${ \sin^2A + \sin^2B + \sin^2C = \cot A + \cot B + \cot C}$
(b) $ S\ge a^2 - (b - c)^2$ where $ S$ is the area of the triangle $ ABC$.
1978 IMO Longlists, 53
Determine all the triples $(a, b, c)$ of positive real numbers such that the system
\[ax + by -cz = 0,\]\[a \sqrt{1-x^2}+b \sqrt{1-y^2}-c \sqrt{1-z^2}=0,\]
is compatible in the set of real numbers, and then find all its real solutions.
2011 Today's Calculation Of Integral, 709
Evaluate $ \int_0^1 \frac{x}{1\plus{}x}\sqrt{1\minus{}x^2}\ dx$.
2002 Flanders Math Olympiad, 4
A lamp is situated at point $A$ and shines inside the cube. A (massive) square is hung on the midpoints of the 4 vertical faces. What's the area of its shadow?
[img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=285[/img]
1991 Arnold's Trivium, 79
How many solutions has the boundary-value problem
\[u_{xx}+\lambda u=\sin x,\;u(0)=u(\pi)=0\]
2014 Romania Team Selection Test, 1
Let $ABC$ a triangle and $O$ his circumcentre.The lines $OA$ and $BC$ intersect each other at $M$ ; the points $N$ and $P$ are defined in an analogous way.The tangent line in $A$ at the circumcircle of triangle $ABC$ intersect $NP$ in the point $X$ ; the points $Y$ and $Z$ are defined in an analogous way.Prove that the points $X$ , $Y$ and $Z$ are collinear.
1967 IMO Shortlist, 2
Let $n$ and $k$ be positive integers such that $1 \leq n \leq N+1$, $1 \leq k \leq N+1$. Show that: \[ \min_{n \neq k} |\sin n - \sin k| < \frac{2}{N}. \]
1985 Vietnam Team Selection Test, 1
A convex polygon $ A_1,A_2,\cdots ,A_n$ is inscribed in a circle with center $ O$ and radius $ R$ so that $ O$ lies inside the polygon. Let the inradii of the triangles $ A_1A_2A_3, A_1A_3A_4, \cdots , A_1A_{n \minus{} 1}A_n$ be denoted by $ r_1,r_2,\cdots ,r_{n \minus{} 2}$. Prove that $ r_1 \plus{} r_2 \plus{} ... \plus{} r_{n \minus{} 2}\leq R(n\cos \frac {\pi}{n} \minus{} n \plus{} 2)$.