Found problems: 3349
2000 National Olympiad First Round, 5
$[BD]$ is a median of $\triangle ABC$. $m(\widehat{ABD})=90^\circ$, $|AB|=2$, and $|AC|=6$. $|BC|=?$
$ \textbf{(A)}\ 3
\qquad\textbf{(B)}\ 3\sqrt2
\qquad\textbf{(C)}\ 5
\qquad\textbf{(D)}\ 4\sqrt2
\qquad\textbf{(E)}\ 2\sqrt6
$
2013 China Team Selection Test, 2
The circumcircle of triangle $ABC$ has centre $O$. $P$ is the midpoint of $\widehat{BAC}$ and $QP$ is the diameter. Let $I$ be the incentre of $\triangle ABC$ and let $D$ be the intersection of $PI$ and $BC$. The circumcircle of $\triangle AID$ and the extension of $PA$ meet at $F$. The point $E$ lies on the line segment $PD$ such that $DE=DQ$. Let $R,r$ be the radius of the inscribed circle and circumcircle of $\triangle ABC$, respectively.
Show that if $\angle AEF=\angle APE$, then $\sin^2\angle BAC=\dfrac{2r}R$
1988 IMO Shortlist, 18
Consider 2 concentric circle radii $ R$ and $ r$ ($ R > r$) with centre $ O.$ Fix $ P$ on the small circle and consider the variable chord $ PA$ of the small circle. Points $ B$ and $ C$ lie on the large circle; $ B,P,C$ are collinear and $ BC$ is perpendicular to $ AP.$
[b]i.)[/b] For which values of $ \angle OPA$ is the sum $ BC^2 \plus{} CA^2 \plus{} AB^2$ extremal?
[b]ii.)[/b] What are the possible positions of the midpoints $ U$ of $ BA$ and $ V$ of $ AC$ as $ \angle OPA$ varies?
2009 China Team Selection Test, 1
Given that circle $ \omega$ is tangent internally to circle $ \Gamma$ at $ S.$ $ \omega$ touches the chord $ AB$ of $ \Gamma$ at $ T$. Let $ O$ be the center of $ \omega.$ Point $ P$ lies on the line $ AO.$ Show that $ PB\perp AB$ if and only if $ PS\perp TS.$
2008 Junior Balkan Team Selection Tests - Romania, 4
Let $ ABC$ be a triangle, and $ D$ the midpoint of the side $ BC$. On the sides $ AB$ and $ AC$ we consider the points $ M$ and $ N$, respectively, both different from the midpoints of the sides, such that \[ AM^2\plus{}AN^2 \equal{}BM^2 \plus{} CN^2 \textrm{ and } \angle MDN \equal{} \angle BAC.\] Prove that $ \angle BAC \equal{} 90^\circ$.
2006 Putnam, A6
Four points are chosen uniformly and independently at random in the interior of a given circle. Find the probability that they are the vertices of a convex quadrilateral.
1988 Flanders Math Olympiad, 4
Be $R$ a positive real number. If $R, 1, R+\frac12$ are triangle sides, call $\theta$ the angle between $R$ and $R+\frac12$ (in rad).
Prove $2R\theta$ is between $1$ and $\pi$.
1997 Flanders Math Olympiad, 2
In the cartesian plane, consider the curves $x^2+y^2=r^2$ and $(xy)^2=1$. Call $F_r$ the convex polygon with vertices the points of intersection of these 2 curves. (if they exist)
(a) Find the area of the polygon as a function of $r$.
(b) For which values of $r$ do we have a regular polygon?
2006 ISI B.Stat Entrance Exam, 5
Let $A,B$ and $C$ be three points on a circle of radius $1$.
(a) Show that the area of the triangle $ABC$ equals
\[\frac12(\sin(2\angle ABC)+\sin(2\angle BCA)+\sin(2\angle CAB))\]
(b) Suppose that the magnitude of $\angle ABC$ is fixed. Then show that the area of the triangle $ABC$ is maximized when $\angle BCA=\angle CAB$
(c) Hence or otherwise, show that the area of the triangle $ABC$ is maximum when the triangle is equilateral.
1986 AIME Problems, 3
If $\tan x+\tan y=25$ and $\cot x + \cot y=30$, what is $\tan(x+y)$?
1999 Mediterranean Mathematics Olympiad, 4
In triangle $\triangle ABC$ we have $BC=a,CA=b,AB=c$ and $\angle B=4\angle A$ Show that \[ab^2c^3=(b^2-a^2-ac)((a^2-b^2)^2-a^2c^2)\]
2010 Today's Calculation Of Integral, 622
For $0<k<2$, consider two curves $C_1: y=\sin 2x\ (0\leq x\leq \pi),\ C_2: y=k\cos x\ (0\leqq x\leqq \pi).$
Denote by $S(k)$ the sum of the areas of four parts enclosed by $C_1,\ C_2$ and two lines $x=0,\ x=\pi$.
Find the minimum value of $S(k).$
[i]2010 Nagoya Institute of Technology entrance exam[/i]
JBMO Geometry Collection, 2007
Let $ABCD$ be a convex quadrilateral with $\angle{DAC}= \angle{BDC}= 36^\circ$ , $\angle{CBD}= 18^\circ$ and $\angle{BAC}= 72^\circ$. The diagonals and intersect at point $P$ . Determine the measure of $\angle{APD}$.
2014 IPhOO, 7
A uniform solid semi-circular disk of radius $R$ and negligible thickness rests on its diameter as shown. It is then tipped over by some angle $\gamma$ with respect to the table. At what minimum angle $\gamma$ will the disk lose balance and tumble over? Express your answer in degrees, rounded to the nearest integer.
[asy]
draw(arc((2,0), 1, 0,180));
draw((0,0)--(4,0));
draw((0,-2.5)--(4,-2.5));
draw(arc((3-sqrt(2)/2, -4+sqrt(2)/2+1.5), 1, -45, 135));
draw((3-sqrt(2), -4+sqrt(2)+1.5)--(3, -4+1.5));
draw(anglemark((3-sqrt(2), -4+sqrt(2)+1.5), (3, -4+1.5), (0, -4+1.5)));
label("$\gamma$", (2.8, -3.9+1.5), WNW, fontsize(8));
[/asy]
[i]Problem proposed by Ahaan Rungta[/i]
2004 Tournament Of Towns, 5
Let K be a point on the side BC of the triangle ABC. The incircles of the triangles ABK and ACK touch BC at points M and N, respectively. Show that [tex]BM\cdot CN>KM \cdot KN[/tex].
1985 Balkan MO, 2
Let $a,b,c,d \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ be real numbers such that
$\sin{a}+\sin{b}+\sin{c}+\sin{d}=1$ and $\cos{2a}+\cos{2b}+\cos{2c}+\cos{2d}\geq \frac{10}{3}$.
Prove that $a,b,c,d \in [0, \frac{\pi}{6}]$
1999 CentroAmerican, 4
In the trapezoid $ABCD$ with bases $AB$ and $CD$, let $M$ be the midpoint of side $DA$. If $BC=a$, $MC=b$ and $\angle MCB=150^\circ$, what is the area of trapezoid $ABCD$ as a function of $a$ and $b$?
1976 IMO Longlists, 8
In a convex quadrilateral (in the plane) with the area of $32 \text{ cm}^{2}$ the sum of two opposite sides and a diagonal is $16 \text{ cm}$. Determine all the possible values that the other diagonal can have.
2009 Today's Calculation Of Integral, 404
Evaluate $ \int_{ \minus{} \pi}^{\pi} \frac {\sin nx}{(1 \plus{} 2009^x)\sin x}\ dx\ (n\equal{}0,\ 1,\ 2,\ \cdots)$.
2023 ISI Entrance UGB, 2
Let $a_0 = \frac{1}{2}$ and $a_n$ be defined inductively by
\[a_n = \sqrt{\frac{1+a_{n-1}}{2}} \text{, $n \ge 1$.} \]
[list=a]
[*] Show that for $n = 0,1,2, \ldots,$
\[a_n = \cos(\theta_n) \text{ for some $0 < \theta_n < \frac{\pi}{2}$, }\]
and determine $\theta_n$.
[*] Using (a) or otherwise, calculate
\[ \lim_{n \to \infty} 4^n (1 - a_n).\]
[/list]
1980 Miklós Schweitzer, 8
Let $ f(x)$ be a nonnegative, integrable function on $ (0,2\pi)$ whose Fourier series is $ f(x)\equal{}a_0\plus{}\sum_{k\equal{}1}^{\infty} a_k \cos (n_k x)$, where none of the positive integers $ n_k$ divides another. Prove that $ |a_k| \leq a_0$.
[i]G. Halasz[/i]
2011 Canadian Mathematical Olympiad Qualification Repechage, 6
In the diagram, $ABDF$ is a trapezoid with $AF$ parallel to $BD$ and $AB$ perpendicular to $BD.$ The circle with center $B$ and radius $AB$ meets $BD$ at $C$ and is tangent to $DF$ at $E.$ Suppose that $x$ is equal to the area of the region inside quadrilateral $ABEF$ but outside the circle, that y is equal to the area of the region inside $\triangle EBD$ but outside the circle, and that $\alpha = \angle EBC.$ Prove that there is exactly one measure $\alpha,$ with $0^\circ \leq \alpha \leq 90^\circ,$ for which $x = y$ and that this value of $\frac 12 < \sin \alpha < \frac{1}{\sqrt 2}.$
[asy]
import graph; size(150); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen qqttff = rgb(0,0.2,1); pen fftttt = rgb(1,0.2,0.2);
draw(circle((6.04,2.8),1.78),qqttff); draw((6.02,4.58)--(6.04,2.8),fftttt); draw((6.02,4.58)--(6.98,4.56),fftttt); draw((6.04,2.8)--(8.13,2.88),fftttt); draw((6.98,4.56)--(8.13,2.88),fftttt);
dot((6.04,2.8),ds); label("$B$", (5.74,2.46), NE*lsf); dot((6.02,4.58),ds); label("$A$", (5.88,4.7), NE*lsf); dot((6.98,4.56),ds); label("$F$", (7.06,4.6), NE*lsf); dot((7.39,3.96),ds); label("$E$", (7.6,3.88), NE*lsf); dot((8.13,2.88),ds); label("$D$", (8.34,2.56), NE*lsf); dot((7.82,2.86),ds); label("$C$", (7.5,2.46), NE*lsf); clip((-4.3,-10.94)--(-4.3,6.3)--(16.18,6.3)--(16.18,-10.94)--cycle);
[/asy]
1988 All Soviet Union Mathematical Olympiad, 472
$A, B, C$ are the angles of a triangle. Show that $2\frac{\sin A}{A} + 2\frac{\sin B}{B} + 2\frac{\sin C}{C} \le \left(\frac{1}{B} + \frac{1}{C}\right) \sin A + \left(\frac{1}{C} + \frac{1}{A}\right) \sin B + \left(\frac{1}{A} + \frac{1}{B}\right) \sin C$
1985 IMO Shortlist, 19
For which integers $n \geq 3$ does there exist a regular $n$-gon in the plane such that all its vertices have integer coordinates in a rectangular coordinate system?
1984 AMC 12/AHSME, 15
If $\sin 2x \sin 3x = \cos 2x \cos 3x$, then one value for $x$ is
A. $18^\circ$
B. $30^\circ$
C. $36^\circ$
D. $45^\circ$
E. $60^\circ$