This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2023 AMC 12/AHSME, 25

There is a unique sequence of integers $a_1, a_2, \cdots a_{2023}$ such that $$ \tan2023x = \frac{a_1 \tan x + a_3 \tan^3 x + a_5 \tan^5 x + \cdots + a_{2023} \tan^{2023} x}{1 + a_2 \tan^2 x + a_4 \tan^4 x \cdots + a_{2022} \tan^{2022} x} $$ whenever $\tan 2023x$ is defined. What is $a_{2023}?$ $\textbf{(A) } -2023 \qquad\textbf{(B) } -2022 \qquad\textbf{(C) } -1 \qquad\textbf{(D) } 1 \qquad\textbf{(E) } 2023$

2000 Belarus Team Selection Test, 1.4

A closed pentagonal line is inscribed in a sphere of the diameter $1$, and has all edges of length $\ell$. Prove that $\ell \le \sin \frac{2\pi}{5}$ .

1996 National High School Mathematics League, 2

Tags: trigonometry
Find the range value of $a$, satisfyin that $\forall x\in\mathbb{R},\theta\in\left[0,\frac{\pi}{2}\right]$, $$(x+3+2\sin\theta\cos\theta)^2+(x+a\sin\theta+a\cos\theta)^2\geq\frac{1}{8}.$$

2007 Balkan MO Shortlist, N3

i thought that this problem was in mathlinks but when i searched i didn't find it.so here it is: Find all positive integers m for which for all $\alpha,\beta \in \mathbb{Z}-\{0\}$ \[ \frac{2^m \alpha^m-(\alpha+\beta)^m-(\alpha-\beta)^m}{3 \alpha^2+\beta^2} \in \mathbb{Z} \]

2022 JHMT HS, 10

The maximum value of \[ 2\sum_{n=1}^{\infty} \frac{\sin(n\theta)}{44^n} \] over all real numbers $\theta$ can be expressed as a common fraction $\tfrac{p}{q}$. Compute $p + q$.

2014 NIMO Problems, 5

Triangle $ABC$ has sidelengths $AB = 14, BC = 15,$ and $CA = 13$. We draw a circle with diameter $AB$ such that it passes $BC$ again at $D$ and passes $CA$ again at $E$. If the circumradius of $\triangle CDE$ can be expressed as $\tfrac{m}{n}$ where $m, n$ are coprime positive integers, determine $100m+n$. [i]Proposed by Lewis Chen[/i]

1996 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 9

The triangle $ ABC$ has vertices in such manner that $ AB \equal{} 3, BC \equal{} 4,$ and $ AC \equal{} 5$. The inscribed circle is tangent to $ AB$ in $ C'$, $ BC$ in $ A'$ and $ AC$ in $ B'.$ What is the ratio between the area of the triangles $ A'B'C'$ and $ ABC$? A. 1/4 B. 1/5 C. 2/9 D. 4/21 E. 5/24

2011 AIME Problems, 4

In triangle $ABC$, $AB=125,AC=117$, and $BC=120$. The angle bisector of angle $A$ intersects $\overline{BC}$ at point $L$, and the angle bisector of angle $B$ intersects $\overline{AC}$ at point $K$. Let $M$ and $N$ be the feet of the perpendiculars from $C$ to $\overline{BK}$ and $\overline{AL}$, respectively. Find $MN$.

2010 Belarus Team Selection Test, 8.3

Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$. [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

1981 AMC 12/AHSME, 24

Tags: trigonometry
If $ \theta$ is a constant such that $ 0 < \theta < \pi$ and $ x \plus{} \frac{1}{x} \equal{} 2\cos{\theta}$. then for each positive integer $ n$, $ x^n \plus{} \frac{1}{x^n}$ equals $ \textbf{(A)}\ 2\cos{\theta}\qquad \textbf{(B)}\ 2^n\cos{\theta}\qquad \textbf{(C)}\ 2\cos^n{\theta}\qquad \textbf{(D)}\ 2\cos{n\theta}\qquad \textbf{(E)}\ 2^n\cos^n{\theta}$

1999 National Olympiad First Round, 4

If inequality $ \frac {\sin ^{3} x}{\cos x} \plus{} \frac {\cos ^{3} x}{\sin x} \ge k$ is hold for every $ x\in \left(0,\frac {\pi }{2} \right)$, what is the largest possible value of $ k$? $\textbf{(A)}\ \frac {1}{2} \qquad\textbf{(B)}\ \frac {3}{4} \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\ \frac {3}{2} \qquad\textbf{(E)}\ \text{None}$

2006 Stanford Mathematics Tournament, 1

Tags: trigonometry
A college student is about to break up with her boyfriend, a mathematics major who is apparently more interested in math than her. Frustrated, she cries, ”You mathematicians have no soul! It’s all numbers and equations! What is the root of your incompetence?!” Her boyfriend assumes she means the square root of himself, or the square root of i. What two answers should he give?

2003 AIME Problems, 11

An angle $x$ is chosen at random from the interval $0^\circ < x < 90^\circ$. Let $p$ be the probability that the numbers $\sin^2 x$, $\cos^2 x$, and $\sin x \cos x$ are not the lengths of the sides of a triangle. Given that $p = d/n$, where $d$ is the number of degrees in $\arctan m$ and $m$ and $n$ are positive integers with $m + n < 1000$, find $m + n$.

1965 German National Olympiad, 6

Let $\alpha,\beta, \gamma$ be the angles of a triangle. Prove that $\cos\alpha, + \cos\beta + \cos\gamma \le \frac{3}{2} $ and find the cases of equality.

1992 IMO Shortlist, 11

In a triangle $ ABC,$ let $ D$ and $ E$ be the intersections of the bisectors of $ \angle ABC$ and $ \angle ACB$ with the sides $ AC,AB,$ respectively. Determine the angles $ \angle A,\angle B, \angle C$ if $ \angle BDE \equal{} 24 ^{\circ},$ $ \angle CED \equal{} 18 ^{\circ}.$

2019 Jozsef Wildt International Math Competition, W. 3

Compute $$\int \limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{\cos x+1-x^2}{(1+x\sin x)\sqrt{1-x^2}}dx$$

2010 Contests, 3

$ABCD$ is a parallelogram in which angle $DAB$ is acute. Points $A, P, B, D$ lie on one circle in exactly this order. Lines $AP$ and $CD$ intersect in $Q$. Point $O$ is the circumcenter of the triangle $CPQ$. Prove that if $D \neq O$ then the lines $AD$ and $DO$ are perpendicular.

2014 All-Russian Olympiad, 4

Given a triangle $ABC$ with $AB>BC$, let $ \Omega $ be the circumcircle. Let $M$, $N$ lie on the sides $AB$, $BC$ respectively, such that $AM=CN$. Let $K$ be the intersection of $MN$ and $AC$. Let $P$ be the incentre of the triangle $AMK$ and $Q$ be the $K$-excentre of the triangle $CNK$. If $R$ is midpoint of the arc $ABC$ of $ \Omega $ then prove that $RP=RQ$. [i]M. Kungodjin[/i]

1992 Putnam, A4

Let $ f$ be an infinitely differentiable real-valued function defined on the real numbers. If $ f(1/n)\equal{}\frac{n^{2}}{n^{2}\plus{}1}, n\equal{}1,2,3,...,$ Compute the values of the derivatives of $ f^{k}(0), k\equal{}0,1,2,3,...$

1967 IMO Shortlist, 3

Prove the trigonometric inequality $\cos x < 1 - \frac{x^2}{2} + \frac{x^4}{16},$ when $x \in \left(0, \frac{\pi}{2} \right).$

2019 India PRMO, 22

In parallelogram $ABCD$, $AC=10$ and $BD=28$. The points $K$ and $L$ in the plane of $ABCD$ move in such a way that $AK=BD$ and $BL=AC$. Let $M$ and $N$ be the midpoints of $CK$ and $DL$, respectively. What is the maximum walue of $\cot^2 (\tfrac{\angle BMD}{2})+\tan^2(\tfrac{\angle ANC}{2})$ ?

1989 Flanders Math Olympiad, 3

Show that:\[\alpha = \pm \frac{\pi}{12} + k\cdot \frac{\pi}2 (k\in \mathbb{Z}) \Longleftrightarrow\ |{\tan \alpha}| + |{\cot \alpha}| = 4\]

1989 IMO Longlists, 5

The sequences $ a_0, a_1, \ldots$ and $ b_0, b_1, \ldots$ are defined for $ n \equal{} 0, 1, 2, \ldots$ by the equalities \[ a_0 \equal{} \frac {\sqrt {2}}{2}, \quad a_{n \plus{} 1} \equal{} \frac {\sqrt {2}}{2} \cdot \sqrt {1 \minus{} \sqrt {1 \minus{} a^2_n}} \] and \[ b_0 \equal{} 1, \quad b_{n \plus{} 1} \equal{} \frac {\sqrt {1 \plus{} b^2_n} \minus{} 1}{b_n} \] Prove the inequalities for every $ n \equal{} 0, 1, 2, \ldots$ \[ 2^{n \plus{} 2} a_n < \pi < 2^{n \plus{} 2} b_n. \]

1983 IMO Longlists, 29

Let $O$ be a point outside a given circle. Two lines $OAB, OCD$ through $O$ meet the circle at $A,B,C,D$, where $A,C$ are the midpoints of $OB,OD$, respectively. Additionally, the acute angle $\theta$ between the lines is equal to the acute angle at which each line cuts the circle. Find $\cos \theta$ and show that the tangents at $A,D$ to the circle meet on the line $BC.$

2010 Junior Balkan MO, 3

Let $AL$ and $BK$ be angle bisectors in the non-isosceles triangle $ABC$ ($L$ lies on the side $BC$, $K$ lies on the side $AC$). The perpendicular bisector of $BK$ intersects the line $AL$ at point $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK$. Prove that $LN = NA$.