This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2005 Junior Balkan Team Selection Tests - Moldova, 5

Let $ABC$ be an acute-angled triangle, and let $F$ be the foot of its altitude from the vertex $C$. Let $M$ be the midpoint of the segment $CA$. Assume that $CF=BM$. Then the angle $MBC$ is equal to angle $FCA$ if and only if the triangle $ABC$ is equilateral.

1949 Miklós Schweitzer, 7

Find the complex numbers $ z$ for which the series \[ 1 \plus{} \frac {z}{2!} \plus{} \frac {z(z \plus{} 1)}{3!} \plus{} \frac {z(z \plus{} 1)(z \plus{} 2)}{4!} \plus{} \cdots \plus{} \frac {z(z \plus{} 1)\cdots(z \plus{} n)}{(n \plus{} 2)!} \plus{} \cdots\] converges and find its sum.

1989 Vietnam National Olympiad, 1

Let $ n$ and $ N$ be natural number. Prove that for any $ \alpha$ , $ 0\le\alpha\le N$, and any real $ x$, it holds that \[{ |\sum_ {k=0}^n}\frac{\sin((\alpha+k)x)}{N+k}|\le\min\{(n+1)|x|, \frac{1}{N|\sin\frac{x}{2}|}\}\]

2008 ITest, 46

Tags: trigonometry
Let $S$ be the sum of all $x$ in the interval $[0,2\pi)$ that satisfy \[\tan^2 x - 2\tan x\sin x=0.\] Compute $\lfloor10S\rfloor$.

1999 Estonia National Olympiad, 3

Prove that the line segment, joining the orthocenter and the intersection point of the medians of the acute-angled triangle $ABC$ is parallel to the side $AB$ iff $\tan \angle A \cdot \tan \angle B = 3$.

2013 USAJMO, 5

Quadrilateral $XABY$ is inscribed in the semicircle $\omega$ with diameter $XY$. Segments $AY$ and $BX$ meet at $P$. Point $Z$ is the foot of the perpendicular from $P$ to line $XY$. Point $C$ lies on $\omega$ such that line $XC$ is perpendicular to line $AZ$. Let $Q$ be the intersection of segments $AY$ and $XC$. Prove that \[\dfrac{BY}{XP}+\dfrac{CY}{XQ}=\dfrac{AY}{AX}.\]

1997 Hungary-Israel Binational, 2

The three squares $ACC_{1}A''$, $ABB_{1}'A'$, $BCDE$ are constructed externally on the sides of a triangle $ABC$. Let $P$ be the center of the square $BCDE$. Prove that the lines $A'C$, $A''B$, $PA$ are concurrent.

2006 APMO, 4

Let $A,B$ be two distinct points on a given circle $O$ and let $P$ be the midpoint of the line segment AB. Let $O_1$ be the circle tangent to the line $AB$ at $P$ and tangent to the circle $O$. Let $l$ be the tangent line, different from the line $AB$, to $O_1$ passing through $A$. Let $C$ be the intersection point, different from $A$, of $l$ and $O$. Let $Q$ be the midpoint of the line segment $BC$ and $O_2$ be the circle tangent to the line $BC$ at $Q$ and tangent to the line segment $AC$. Prove that the circle $O_2$ is tangent to the circle $O$.

2014 PUMaC Geometry A, 8

$ABCD$ is a cyclic quadrilateral with circumcenter $O$ and circumradius $7$. $AB$ intersects $CD$ at $E$, $DA$ intersects $CB$ at $F$. $OE=13$, $OF=14$. Let $\cos\angle FOE=\dfrac pq$, with $p$, $q$ coprime. Find $p+q$.

1984 AMC 12/AHSME, 23

Tags: trigonometry
$\frac{\sin 10^\circ + \sin 20^\circ}{\cos 10^\circ + \cos 20^\circ}$ equals A. $\tan 10^\circ + \tan 20^\circ$ B. $\tan 30^\circ$ C. $\frac{1}{2} (\tan 10^\circ + \tan 20^\circ)$ D. $\tan 15^\circ$ E. $\frac{1}{4} \tan 60^\circ$

VI Soros Olympiad 1999 - 2000 (Russia), 11.1

Solve the system of equations $$\begin{cases} x^2+arc siny =y^2+arcsin x \\ x^2+y^2-3x=2y\sqrt{x^2-2x-y}+1 \end{cases}$$

2009 USA Team Selection Test, 7

Find all triples $ (x,y,z)$ of real numbers that satisfy the system of equations \[ \begin{cases}x^3 \equal{} 3x\minus{}12y\plus{}50, \\ y^3 \equal{} 12y\plus{}3z\minus{}2, \\ z^3 \equal{} 27z \plus{} 27x. \end{cases}\] [i]Razvan Gelca.[/i]

2025 Sharygin Geometry Olympiad, 15

A point $C$ lies on the bisector of an acute angle with vertex $S$. Let $P$, $Q$ be the projections of $C$ to the sidelines of the angle. The circle centered at $C$ with radius $PQ$ meets the sidelines at points $A$ and $B$ such that $SA\ne SB$. Prove that the circle with center $A$ touching $SB$ and the circle with center $B$ touching $SA$ are tangent. Proposed by: A.Zaslavsky

2014 China Team Selection Test, 4

Given circle $O$ with radius $R$, the inscribed triangle $ABC$ is an acute scalene triangle, where $AB$ is the largest side. $AH_A, BH_B,CH_C$ are heights on $BC,CA,AB$. Let $D$ be the symmetric point of $H_A$ with respect to $H_BH_C$, $E$ be the symmetric point of $H_B$ with respect to $H_AH_C$. $P$ is the intersection of $AD,BE$, $H$ is the orthocentre of $\triangle ABC$. Prove: $OP\cdot OH$ is fixed, and find this value in terms of $R$. (Edited)

2007 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be a right triangle with $A = 90^{\circ}$ and $D \in (AC)$. Denote by $E$ the reflection of $A$ in the line $BD$ and $F$ the intersection point of $CE$ with the perpendicular in $D$ to $BC$. Prove that $AF, DE$ and $BC$ are concurrent.

2005 Today's Calculation Of Integral, 70

Find the number of root for $\int_0^{\frac{\pi}{2}} e^x\cos (x+a)\ dx=0$ at $0\leq a <2\pi$

1966 IMO, 2

Let $a,b,c$ be the lengths of the sides of a triangle, and $\alpha, \beta, \gamma$ respectively, the angles opposite these sides. Prove that if \[ a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta}) \] the triangle is isosceles.

1990 Vietnam National Olympiad, 1

The sequence $ (x_n)$, $ n\in\mathbb{N}^*$ is defined by $ |x_1|<1$, and for all $ n \ge 1$, \[ x_{n\plus{}1} \equal{}\frac{\minus{}x_n \plus{}\sqrt{3\minus{}3x_n^2}}{2}\] (a) Find the necessary and sufficient condition for $ x_1$ so that each $ x_n > 0$. (b) Is this sequence periodic? And why?

PEN G Problems, 11

Show that $\cos 1^{\circ}$ is irrational.

2005 Today's Calculation Of Integral, 59

Evaluate \[\int_{-\pi}^{\pi} (\cos2x)(\cos 2^2x)\cdots (\cos 2^{2006}x)dx\]

2011 Singapore MO Open, 3

Let $x,y,z>0$ such that $\frac1x+\frac1y+\frac1z<\frac{1}{xyz}$. Show that \[\frac{2x}{\sqrt{1+x^2}}+\frac{2y}{\sqrt{1+y^2}}+\frac{2z}{\sqrt{1+z^2}}<3.\]

2010 India IMO Training Camp, 10

Let $ABC$ be a triangle. Let $\Omega$ be the brocard point. Prove that $\left(\frac{A\Omega}{BC}\right)^2+\left(\frac{B\Omega}{AC}\right)^2+\left(\frac{C\Omega}{AB}\right)^2\ge 1$

2007 AMC 12/AHSME, 19

Triangles $ ABC$ and $ ADE$ have areas $ 2007$ and $ 7002,$ respectively, with $ B \equal{} (0,0),$ $ C \equal{} (223,0),$ $ D \equal{} (680,380),$ and $ E \equal{} (689,389).$ What is the sum of all possible x-coordinates of $ A?$ $ \textbf{(A)}\ 282 \qquad \textbf{(B)}\ 300 \qquad \textbf{(C)}\ 600 \qquad \textbf{(D)}\ 900 \qquad \textbf{(E)}\ 1200$

2007 Iran Team Selection Test, 3

Let $P$ be a point in a square whose side are mirror. A ray of light comes from $P$ and with slope $\alpha$. We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put $0$, and after each contact with a vertical side, we put $1$. For each $n\geq 1$, let $B_{n}$ be set of all blocks of length $n$, in this sequence. a) Prove that $B_{n}$ does not depend on location of $P$. b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $|B_{n}|=n+1$.

1996 APMO, 1

Let $ABCD$ be a quadrilateral $AB = BC = CD = DA$. Let $MN$ and $PQ$ be two segments perpendicular to the diagonal $BD$ and such that the distance between them is $d > \frac{BD}{2}$, with $M \in AD$, $N \in DC$, $P \in AB$, and $Q \in BC$. Show that the perimeter of hexagon $AMNCQP$ does not depend on the position of $MN$ and $PQ$ so long as the distance between them remains constant.