This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2007 India IMO Training Camp, 1

Show that in a non-equilateral triangle, the following statements are equivalent: $(a)$ The angles of the triangle are in arithmetic progression. $(b)$ The common tangent to the Nine-point circle and the Incircle is parallel to the Euler Line.

2011 Korea - Final Round, 2

$ABC$ is a triangle such that $AC<AB<BC$ and $D$ is a point on side $AB$ satisfying $AC=AD$. The circumcircle of $ABC$ meets with the bisector of angle $A$ again at $E$ and meets with $CD$ again at $F$. $K$ is an intersection point of $BC$ and $DE$. Prove that $CK=AC$ is a necessary and sufficient condition for $DK \cdot EF = AC \cdot DF$.

2009 Iran Team Selection Test, 10

Let $ ABC$ be a triangle and $ AB\ne AC$ . $ D$ is a point on $ BC$ such that $ BA \equal{} BD$ and $ B$ is between $ C$ and $ D$ . Let $ I_{c}$ be center of the circle which touches $ AB$ and the extensions of $ AC$ and $ BC$ . $ CI_{c}$ intersect the circumcircle of $ ABC$ again at $ T$ . If $ \angle TDI_{c} \equal{} \frac {\angle B \plus{} \angle C}{4}$ then find $ \angle A$

1999 AIME Problems, 12

The inscribed circle of triangle $ABC$ is tangent to $\overline{AB}$ at $P,$ and its radius is 21. Given that $AP=23$ and $PB=27,$ find the perimeter of the triangle.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.7

Solve the system of equations $$\begin{cases} \sin^3 x+\sin^4 y=1 \\ \cos^4 x+\cos^5 y =1\end{cases}$$

2011 Iran MO (2nd Round), 2

In triangle $ABC$, we have $\angle ABC=60$. The line through $B$ perpendicular to side $AB$ intersects angle bisector of $\angle BAC$ in $D$ and the line through $C$ perpendicular $BC$ intersects angle bisector of $\angle ABC$ in $E$. prove that $\angle BED\le 30$.

1989 China Team Selection Test, 2

$AD$ is the altitude on side $BC$ of triangle $ABC$. If $BC+AD-AB-AC = 0$, find the range of $\angle BAC$. [i]Alternative formulation.[/i] Let $AD$ be the altitude of triangle $ABC$ to the side $BC$. If $BC+AD=AB+AC$, then find the range of $\angle{A}$.

2004 USAMO, 6

A circle $\omega$ is inscribed in a quadrilateral $ABCD$. Let $I$ be the center of $\omega$. Suppose that \[ (AI + DI)^2 + (BI + CI)^2 = (AB + CD)^2. \] Prove that $ABCD$ is an isosceles trapezoid.

2012 District Olympiad, 3

Let be a sequence of natural numbers $ \left( a_n \right)_{n\ge 1} $ such that $ a_n\le n $ for all natural numbers $ n, $ and $$ \sum_{j=1}^{k-1} \cos \frac{\pi a_j}{k} =0, $$ for all natural $ k\ge 2. $ [b]a)[/b] Find $ a_2. $ [b]b)[/b] Determine this sequence.

2004 All-Russian Olympiad, 3

Let $ ABCD$ be a quadrilateral which is a cyclic quadrilateral and a tangent quadrilateral simultaneously. (By a [i]tangent quadrilateral[/i], we mean a quadrilateral that has an incircle.) Let the incircle of the quadrilateral $ ABCD$ touch its sides $ AB$, $ BC$, $ CD$, and $ DA$ in the points $ K$, $ L$, $ M$, and $ N$, respectively. The exterior angle bisectors of the angles $ DAB$ and $ ABC$ intersect each other at a point $ K^{\prime}$. The exterior angle bisectors of the angles $ ABC$ and $ BCD$ intersect each other at a point $ L^{\prime}$. The exterior angle bisectors of the angles $ BCD$ and $ CDA$ intersect each other at a point $ M^{\prime}$. The exterior angle bisectors of the angles $ CDA$ and $ DAB$ intersect each other at a point $ N^{\prime}$. Prove that the straight lines $ KK^{\prime}$, $ LL^{\prime}$, $ MM^{\prime}$, and $ NN^{\prime}$ are concurrent.

2007 ITest, 48

Let $a$ and $b$ be relatively prime positive integers such that $a/b$ is the maximum possible value of \[\sin^2x_1+\sin^2x_2+\sin^2x_3+\cdots+\sin^2x_{2007},\] where, for $1\leq i\leq 2007$, $x_i$ is a nonnegative real number, and \[x_1+x_2+x_3+\cdots+x_{2007}=\pi.\] Find the value of $a+b$.

1996 India National Olympiad, 2

Let $C_1$ and $C_2$ be two concentric circles in the plane with radii $R$ and $3R$ respectively. Show that the orthocenter of any triangle inscribed in circle $C_1$ lies in the interior of circle $C_2$. Conversely, show that every point in the interior of $C_2$ is the orthocenter of some triangle inscribed in $C_1$.

2010 Balkan MO Shortlist, G1

Let $ABCDE$ be a pentagon with $\hat{A}=\hat{B}=\hat{C}=\hat{D}=120^{\circ}$. Prove that $4\cdot AC \cdot BD\geq 3\cdot AE \cdot ED$.

1991 Arnold's Trivium, 17

Find the distance of the centre of gravity of a uniform $100$-dimensional solid hemisphere of radius $1$ from the centre of the sphere with $10\%$ relative error.

2005 Today's Calculation Of Integral, 6

Calculate the following indefinite integrals. [1] $\int \sin x\cos ^ 3 x dx$ [2] $\int \frac{dx}{(1+\sqrt{x})\sqrt{x}}dx$ [3] $\int x^2 \sqrt{x^3+1}dx$ [4] $\int \frac{e^{2x}-3e^{x}}{e^x}dx$ [5] $\int (1-x^2)e^x dx$

1975 IMO Shortlist, 12

Consider on the first quadrant of the trigonometric circle the arcs $AM_1 = x_1,AM_2 = x_2,AM_3 = x_3, \ldots , AM_v = x_v$ , such that $x_1 < x_2 < x_3 < \cdots < x_v$. Prove that \[\sum_{i=0}^{v-1} \sin 2x_i - \sum_{i=0}^{v-1} \sin (x_i- x_{i+1}) < \frac{\pi}{2} + \sum_{i=0}^{v-1} \sin (x_i + x_{i+1})\]

1999 Hong kong National Olympiad, 2

Let $I$ be the incentre and $O$ the circumcentre of a non-equilateral triangle $ABC$. Prove that $\angle AIO \le 90^{\circ}$ if and only if $2BC\le AB+AC$.

1980 Miklós Schweitzer, 7

Let $ n \geq 2$ be a natural number and $ p(x)$ a real polynomial of degree at most $ n$ for which \[ \max _{ \minus{}1 \leq x \leq 1} |p(x)| \leq 1, \; p(\minus{}1)\equal{}p(1)\equal{}0 \ .\] Prove that then \[ |p'(x)| \leq \frac{n \cos \frac{\pi}{2n}}{\sqrt{1\minus{}x^2 \cos^2 \frac{\pi}{2n}}} \;\;\;\;\; \left( \minus{}\frac{1}{\cos \frac{\pi}{2n}} < x < \frac{1}{\cos \frac{\pi}{2n}} \\\\\ \right).\] [i]J. Szabados[/i]

2011 Tokyo Instutute Of Technology Entrance Examination, 1

Consider a curve $C$ on the $x$-$y$ plane expressed by $x=\tan \theta ,\ y=\frac{1}{\cos \theta}\left (0\leq \theta <\frac{\pi}{2}\right)$. For a constant $t>0$, let the line $l$ pass through the point $P(t,\ 0)$ and is perpendicular to the $x$-axis,intersects with the curve $C$ at $Q$. Denote by $S_1$ the area of the figure bounded by the curve $C$, the $x$-axis, the $y$-axis and the line $l$, and denote by $S_2$ the area of $\triangle{OPQ}$. Find $\lim_{t\to\infty} \frac{S_1-S_2}{\ln t}.$

1932 Eotvos Mathematical Competition, 3

Let $\alpha$, $\beta$ and $\gamma$ be the interior angles of an acute triangle. Prove that if $\alpha < \beta < \gamma$ then $$\sin 2\alpha >\ sin 2 \beta > \sin 2\gamma.$$

1953 AMC 12/AHSME, 37

The base of an isosceles triangle is $ 6$ inches and one of the equal sides is $ 12$ inches. The radius of the circle through the vertices of the triangle is: $ \textbf{(A)}\ \frac{7\sqrt{15}}{5} \qquad\textbf{(B)}\ 4\sqrt{3} \qquad\textbf{(C)}\ 3\sqrt{5} \qquad\textbf{(D)}\ 6\sqrt{3} \qquad\textbf{(E)}\ \text{none of these}$

2006 Kyiv Mathematical Festival, 4

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Let $O$ be the circumcenter and $H$ be the intersection point of the altitudes of acute triangle $ABC.$ The straight lines $BH$ and $CH$ intersect the segments $CO$ and $BO$ at points $D$ and $E$ respectively. Prove that if triangles $ODH$ and $OEH$ are isosceles then triangle $ABC$ is isosceles too.

1995 IMO Shortlist, 3

The incircle of triangle $ \triangle ABC$ touches the sides $ BC$, $ CA$, $ AB$ at $ D, E, F$ respectively. $ X$ is a point inside triangle of $ \triangle ABC$ such that the incircle of triangle $ \triangle XBC$ touches $ BC$ at $ D$, and touches $ CX$ and $ XB$ at $ Y$ and $ Z$ respectively. Show that $ E, F, Z, Y$ are concyclic.

1968 Vietnam National Olympiad, 2

$L$ and $M$ are two parallel lines a distance $d$ apart. Given $r$ and $x$, construct a triangle $ABC$, with $A$ on $L$, and $B$ and $C$ on $M$, such that the inradius is $r$, and angle $A = x$. Calculate angles $B$ and $C$ in terms of $d$, $r$ and $x$. If the incircle touches the side $BC$ at $D$, find a relation between $BD$ and $DC$

2011 Today's Calculation Of Integral, 678

Evaluate \[\int_0^{\pi} \left(1+\sum_{k=1}^n k\cos kx\right)^2dx\ \ (n=1,\ 2,\ \cdots).\] [i]2011 Doshisya University entrance exam/Life Medical Sciences[/i]