Found problems: 3349
Estonia Open Senior - geometry, 2003.1.2
Four rays spread out from point $O$ in a $3$-dimensional space in a way that the angle between every two rays is $a$. Find $\cos a$.
2013 Online Math Open Problems, 7
Points $M$, $N$, $P$ are selected on sides $\overline{AB}$, $\overline{AC}$, $\overline{BC}$, respectively, of triangle $ABC$. Find the area of triangle $MNP$ given that $AM=MB=BP=15$ and $AN=NC=CP=25$.
[i]Proposed by Evan Chen[/i]
2008 Harvard-MIT Mathematics Tournament, 7
A [i]root of unity[/i] is a complex number that is a solution to $ z^n \equal{} 1$ for some positive integer $ n$. Determine the number of roots of unity that are also roots of $ z^2 \plus{} az \plus{} b \equal{} 0$ for some integers $ a$ and $ b$.
2014 Contests, 2
Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.
2000 Harvard-MIT Mathematics Tournament, 20
What is the minimum possible perimeter of a triangle two of whose sides are along the x- and y-axes and such that the third contains the point $(1,2)$?
2013 AIME Problems, 5
In equilateral $\triangle ABC$ let points $D$ and $E$ trisect $\overline{BC}$. Then $\sin \left( \angle DAE \right)$ can be expressed in the form $\tfrac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is an integer that is not divisible by the square of any prime. Find $a+b+c$.
2010 South africa National Olympiad, 2
Consider a triangle $ABC$ with $BC = 3$. Choose a point $D$ on $BC$ such that $BD = 2$. Find the value of
\[AB^2 + 2AC^2 - 3AD^2.\]
1987 All Soviet Union Mathematical Olympiad, 451
Prove such $a$, that all the numbers $\cos a, \cos 2a, \cos 4a, ... , \cos (2^na)$ are negative.
2004 Mediterranean Mathematics Olympiad, 2
In a triangle $ABC$, the altitude from $A$ meets the circumcircle again at $T$ . Let $O$ be the circumcenter. The lines $OA$ and $OT$ intersect the side $BC$ at $Q$ and $M$, respectively. Prove that
\[\frac{S_{AQC}}{S_{CMT}} = \biggl( \frac{ \sin B}{\cos C} \biggr)^2 .\]
2009 Today's Calculation Of Integral, 449
Evaluate $ \sum_{k\equal{}1}^n \int_0^{\pi} (\sin x\minus{}\cos kx)^2dx.$
JBMO Geometry Collection, 1999
Let $ABC$ be a triangle with $AB=AC$. Also, let $D\in[BC]$ be a point such that $BC>BD>DC>0$, and let $\mathcal{C}_1,\mathcal{C}_2$ be the circumcircles of the triangles $ABD$ and $ADC$ respectively. Let $BB'$ and $CC'$ be diameters in the two circles, and let $M$ be the midpoint of $B'C'$. Prove that the area of the triangle $MBC$ is constant (i.e. it does not depend on the choice of the point $D$).
[i]Greece[/i]
2014 Singapore Senior Math Olympiad, 6
Given that $\tan A=\frac{12}{5}$, $\cos B=-\frac{3}{5}$ and that $A$ and $B$ are in the same quadrant, find the value of $\cos (A-B)$.
$ \textbf{(A) }-\frac{63}{65}\qquad\textbf{(B) }-\frac{64}{65}\qquad\textbf{(C) }\frac{63}{65}\qquad\textbf{(D) }\frac{64}{65}\qquad\textbf{(E) }\frac{65}{63} $
1980 Spain Mathematical Olympiad, 5
Prove that if $x$ is such that $$x +\frac{1}{x}= 2\cos \alpha $$ then, for all $n = 0, 1, 2, . . . ,$
$$x^n ++\frac{1}{x^n}= 2\cos n \alpha .$$
2008 Gheorghe Vranceanu, 1
Find the complex numbers $ a,b $ having the properties that $ |a|=|b|=1=\bar{a} +\bar{b} -ab. $
1985 ITAMO, 9
In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of $\alpha$, $\beta$, and $\alpha + \beta$ radians, respectively, where $\alpha + \beta < \pi$. If $\cos \alpha$, which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?
2013 Kosovo National Mathematical Olympiad, 2
Solve equation $27\cdot3^{3\sin x}=9^{\cos^2x}$ where $x\in [0,2\pi )$
2002 AMC 12/AHSME, 25
Let $a$ and $b$ be real numbers such that $\sin a+\sin b=\dfrac{\sqrt2}2$ and $\cos a+\cos b=\dfrac{\sqrt6}2$. Find $\sin(a+b)$.
$\textbf{(A) }\dfrac12\qquad\textbf{(B) }\dfrac{\sqrt2}2\qquad\textbf{(C) }\dfrac{\sqrt3}2\qquad\textbf{(D) }\dfrac{\sqrt6}2\qquad\textbf{(E) }1$
2013 IPhOO, 7
A conical pendulum is formed from a rope of length $ 0.50 \, \text{m} $ and negligible mass, which is suspended from a fixed pivot attached to the ceiling. A ping-pong ball of mass $ 3.0 \, \text{g} $ is attached to the lower end of the rope. The ball moves in a circle with constant speed in the horizontal plane and the ball goes through one revolution in $ 1.0 \, \text{s} $. How high is the ceiling in comparison to the horizontal plane in which the ball revolves? Express your answer to two significant digits, in cm.
[i](Proposed by Ahaan Rungta)[/i]
[hide="Clarification"]
During the WOOT Contest, contestants wondered what exactly a conical pendulum looked like. Since contestants were not permitted to look up information during the contest, we posted this diagram: [asy]
size(6cm);
import olympiad;
draw((-1,3)--(1,3));
draw(xscale(4) * scale(0.5) * unitcircle, dotted);
draw(origin--(0,3), dashed);
label("$h$", (0,1.5), dir(180));
draw((0,3)--(2,0));
filldraw(shift(2) * scale(0.2) * unitcircle, 1.4*grey, black);
dot(origin);
dot((0,3));[/asy]The question is to find $h$.
[/hide]
2013 Stanford Mathematics Tournament, 8
Rational Man and Irrational Man both buy new cars, and they decide to drive around two racetracks from time $t=0$ to time $t=\infty$. Rational Man drives along the path parametrized by \begin{align*}x&=\cos(t)\\y&=\sin(t)\end{align*} and Irrational Man drives along the path parametrized by \begin{align*}x&=1+4\cos\frac{t}{\sqrt{2}}\\ y&=2\sin\frac{t}{\sqrt{2}}.\end{align*} Find the largest real number $d$ such that at any time $t$, the distance between Rational Man and Irrational Man is not less than $d$.
2012 Germany Team Selection Test, 2
Let $ABC$ be an acute triangle. Let $\omega$ be a circle whose centre $L$ lies on the side $BC$. Suppose that $\omega$ is tangent to $AB$ at $B'$ and $AC$ at $C'$. Suppose also that the circumcentre $O$ of triangle $ABC$ lies on the shorter arc $B'C'$ of $\omega$. Prove that the circumcircle of $ABC$ and $\omega$ meet at two points.
[i]Proposed by Härmel Nestra, Estonia[/i]
1992 India Regional Mathematical Olympiad, 4
$ABCD$ is a cyclic quadrilateral with $AC \perp BD$; $AC$ meets $BD$ at $E$. Prove that \[ EA^2 + EB^2 + EC^2 + ED^2 = 4 R^2 \]
where $R$ is the radius of the circumscribing circle.
2001 Hungary-Israel Binational, 4
Let $P (x) = x^{3}-3x+1.$ Find the polynomial $Q$ whose roots are the fifth powers of the roots of $P$.
2011 Kazakhstan National Olympiad, 6
Determine all pairs of positive real numbers $(a, b)$ for which there exists a function $ f:\mathbb{R^{+}}\rightarrow\mathbb{R^{+}} $ satisfying for all positive real numbers $x$ the equation
$ f(f(x))=af(x)- bx $
2013 District Olympiad, 2
Given triangle $ABC$ and the points$D,E\in \left( BC \right)$, $F,G\in \left( CA \right)$, $H,I\in \left( AB \right)$ so that $BD=CE$, $CF=AG$ and $AH=BI$. Note with $M,N,P$ the midpoints of $\left[ GH \right]$, $\left[ DI \right]$ and $\left[ EF \right]$ and with ${M}'$ the intersection of the segments $AM$and $BC$.
a) Prove that $\frac{B{M}'}{C{M}'}=\frac{AG}{AH}\cdot \frac{AB}{AC}$.
b) Prove that the segments$AM$, $BN$ and $CP$ are concurrent.
2003 China Girls Math Olympiad, 7
Let the sides of a scalene triangle $ \triangle ABC$ be $ AB \equal{} c,$ $ BC \equal{} a,$ $ CA \equal{}b,$ and $ D, E , F$ be points on $ BC, CA, AB$ such that $ AD, BE, CF$ are angle bisectors of the triangle, respectively. Assume that $ DE \equal{} DF.$ Prove that
(1) $ \frac{a}{b\plus{}c} \equal{} \frac{b}{c\plus{}a} \plus{} \frac{c}{a\plus{}b}$
(2) $ \angle BAC > 90^{\circ}.$