Found problems: 3349
2006 Iran Team Selection Test, 5
Let $ABC$ be a triangle such that it's circumcircle radius is equal to the radius of outer inscribed circle with respect to $A$.
Suppose that the outer inscribed circle with respect to $A$ touches $BC,AC,AB$ at $M,N,L$.
Prove that $O$ (Center of circumcircle) is the orthocenter of $MNL$.
1967 Putnam, A1
Let $f(x)= a_1 \sin x + a_2 \sin 2x+\cdots +a_{n} \sin nx $, where $a_1 ,a_2 ,\ldots,a_n $ are real numbers and where $n$ is a positive integer. Given that $|f(x)| \leq | \sin x |$ for all real $x,$ prove that
$$|a_1 +2a_2 +\cdots +na_{n}|\leq 1.$$
2011 Today's Calculation Of Integral, 673
Let $f(x)=\int_0^ x \frac{1}{1+t^2}dt.$ For $-1\leq x<1$, find $\cos \left\{2f\left(\sqrt{\frac{1+x}{1-x}}\right)\right\}.$
[i]2011 Ritsumeikan University entrance exam/Science and Technology[/i]
2009 Today's Calculation Of Integral, 485
In the $x$-$y$ plane, for the origin $ O$, given an isosceles triangle $ OAB$ with $ AO \equal{} AB$ such that $ A$ is on the first quadrant and $ B$ is on the $ x$ axis.
Denote the area by $ s$. Find the area of the common part of the traingle and the region expressed by the inequality $ xy\leq 1$ to give the area as the function of $ s$.
1990 IMO Longlists, 15
Given a triangle $ ABC$. Let $ G$, $ I$, $ H$ be the centroid, the incenter and the orthocenter of triangle $ ABC$, respectively. Prove that $ \angle GIH > 90^{\circ}$.
2013 Iran MO (3rd Round), 4
In a triangle $ABC$ with circumcircle $(O)$ suppose that $A$-altitude cut $(O)$ at $D$. Let altitude of $B,C$ cut $AC,AB$ at $E,F$. $H$ is orthocenter and $T$ is midpoint of $AH$. Parallel line with $EF$ passes through $T$ cut $AB,AC$ at $X,Y$. Prove that $\angle XDF = \angle YDE$.
2010 AMC 12/AHSME, 24
Let $ f(x) \equal{} \log_{10} (\sin (\pi x)\cdot\sin (2\pi x)\cdot\sin (3\pi x) \cdots \sin (8\pi x))$. The intersection of the domain of $ f(x)$ with the interval $ [0,1]$ is a union of $ n$ disjoint open intervals. What is $ n$?
$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 22 \qquad \textbf{(E)}\ 36$
1975 Polish MO Finals, 5
Show that it is possible to circumscribe a circle of radius $R$ about, and inscribe a circle of radius $r$ in some triangle with one angle equal to $a$, if and only if $$\frac{2R}{r} \ge \dfrac{1}{ \sin \frac{a}{2} \left(1- \sin \frac{a}{2} \right)}$$
2010 Sharygin Geometry Olympiad, 21
A given convex quadrilateral $ABCD$ is such that $\angle ABD + \angle ACD > \angle BAC + \angle BDC.$ Prove that
\[S_{ABD}+S_{ACD} > S_{BAC}+S_{BDC}.\]
1983 AMC 12/AHSME, 11
Simplify $\sin (x-y) \cos y + \cos (x-y) \sin y$.
$ \textbf{(A)}\ 1\qquad\textbf{(B)}\ \sin x\qquad\textbf{(C)}\ \cos x\qquad\textbf{(D)}\ \sin x \cos 2y\qquad\textbf{(E)}\ \cos x \cos 2y $
2009 Iran MO (2nd Round), 3
Let $ ABC $ be a triangle and the point $ D $ is on the segment $ BC $ such that $ AD $ is the interior bisector of $ \angle A $. We stretch $ AD $ such that it meets the circumcircle of $ \Delta ABC $ at $ M $. We draw a line from $ D $ such that it meets the lines $ MB,MC $ at $ P,Q $, respectively ($ M $ is not between $ B,P $ and also is not between $ C,Q $).
Prove that $ \angle PAQ\geq\angle BAC $.
2012 Today's Calculation Of Integral, 853
Let $0<a<\frac {\pi}2.$ Find $\lim_{a\rightarrow +0} \frac{1}{a^3}\int_0^a \ln\ (1+\tan a\tan x)\ dx.$
1961 IMO, 3
Solve the equation $\cos^n{x}-\sin^n{x}=1$ where $n$ is a natural number.
2011 Today's Calculation Of Integral, 741
Evaluate
\[\int_0^1 \frac{(x-1)^2(\cos x+1)-(2x-1)\sin x}{(x-1+\sqrt{\sin x})^2}\ dx\]
2011 All-Russian Olympiad, 4
Let $N$ be the midpoint of arc $ABC$ of the circumcircle of triangle $ABC$, let $M$ be the midpoint of $AC$ and let $I_1, I_2$ be the incentres of triangles $ABM$ and $CBM$. Prove that points $I_1, I_2, B, N$ lie on a circle.
[i]M. Kungojin[/i]
Estonia Open Senior - geometry, 2005.2.4
Three rays are going out from point $O$ in space, forming pairwise angles $\alpha, \beta$ and $\gamma$ with $0^o<\alpha \le \beta \le \gamma <180^o$. Prove that $\sin \frac{\alpha}{2}+ \sin \frac{\beta}{2} > \sin \frac{\gamma}{2}$.
2014 Harvard-MIT Mathematics Tournament, 31
Compute \[\sum_{k=1}^{1007}\left(\cos\left(\dfrac{\pi k}{1007}\right)\right)^{2014}.\]
1987 China National Olympiad, 1
Let $n$ be a natural number. Prove that a necessary and sufficient condition for the equation $z^{n+1}-z^n-1=0$ to have a complex root whose modulus is equal to $1$ is that $n+2$ is divisible by $6$.
1991 Baltic Way, 10
Express the value of $\sin 3^\circ$ in radicals.
2012 National Olympiad First Round, 27
What is the least real number $C$ that satisfies $\sin x \cos x \leq C(\sin^6x+\cos^6x)$ for every real number $x$?
$ \textbf{(A)}\ \sqrt3 \qquad \textbf{(B)}\ 2\sqrt2 \qquad \textbf{(C)}\ \sqrt 2 \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ \text{None}$
2014 PUMaC Geometry B, 4
Let $O$ be the circumcenter of triangle $ABC$ with circumradius $15$. Let $G$ be the centroid of $ABC$ and let $M$ be the midpoint of $BC$. If $BC=18$ and $\angle MOA=150^\circ$, find the area of $OMG$.
2001 AMC 12/AHSME, 22
In rectangle $ ABCD$, points $ F$ and $ G$ lie on $ \overline{AB}$ so that $ AF \equal{} FG \equal{} GB$ and $ E$ is the midpoint of $ \overline{DC}$. Also, $ \overline{AC}$ intersects $ \overline{EF}$ at $ H$ and $ \overline{EG}$ at $ J$. The area of the rectangle $ ABCD$ is $ 70$. Find the area of triangle $ EHJ$.
[asy]
size(180);
pair A, B, C, D, E, F, G, H, J;
A = origin;
real length = 6;
real width = 3.5;
B = length*dir(0);
C = (length, width);
D = width*dir(90);
F = length/3*dir(0);
G = 2*length/3*dir(0);
E = (length/2, width);
H = extension(A, C, E, F);
J = extension(A, C, E, G);
draw(A--B--C--D--cycle);
draw(G--E--F);
draw(A--C);
label("$A$", A, dir(180));
label("$D$", D, dir(180));
label("$B$", B, dir(0));
label("$C$", C, dir(0));
label("$F$", F, dir(270));
label("$E$", E, dir(90));
label("$G$", G, dir(270));
label("$H$", H, dir(140));
label("$J$", J, dir(340));
[/asy]
$ \displaystyle \textbf{(A)} \ \frac {5}{2} \qquad \textbf{(B)} \ \frac {35}{12} \qquad \textbf{(C)} \ 3 \qquad \textbf{(D)} \ \frac {7}{2} \qquad \textbf{(E)} \ \frac {35}{8}$
PEN F Problems, 2
Find all $x$ and $y$ which are rational multiples of $\pi$ with $0<x<y<\frac{\pi}{2}$ and $\tan x+\tan y =2$.
2015 Mathematical Talent Reward Programme, MCQ: P 13
Define $f(x)=\max \{\sin x, \cos x\} .$ Find at how many points in $(-2 \pi, 2 \pi), f(x)$ is not differentiable?
[list=1]
[*] 0
[*] 2
[*] 4
[*] $\infty$
[/list]
1967 IMO Longlists, 49
Let $n$ and $k$ be positive integers such that $1 \leq n \leq N+1$, $1 \leq k \leq N+1$. Show that: \[ \min_{n \neq k} |\sin n - \sin k| < \frac{2}{N}. \]