This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

1965 Bulgaria National Olympiad, Problem 2

Prove the inequality: $$(1+\sin^2\alpha)^n+(1+\cos^2\alpha)^n\ge2\left(\frac32\right)^n$$is true for every natural number $n$. When does equality hold?

2010 Math Prize For Girls Problems, 18

Tags: trigonometry
If $a$ and $b$ are positive integers such that \[ \sqrt{8 + \sqrt{32 + \sqrt{768}}} = a \cos \frac{\pi}{b} \, , \] compute the ordered pair $(a, b)$.

2006 Moldova National Olympiad, 11.5

Let $n\in\mathbb{N}^*$. Solve the equation $\sum_{k=0}^n C_n^k\cos2kx=\cos nx$ in $\mathbb{R}$.

2014 PUMaC Geometry A, 3

Let $O$ be the circumcenter of triangle $ABC$ with circumradius $15$. Let $G$ be the centroid of $ABC$ and let $M$ be the midpoint of $BC$. If $BC=18$ and $\angle MOA=150^\circ$, find the area of $OMG$.

2014 Uzbekistan National Olympiad, 4

A circle passes through the points $A,C$ of triangle $ABC$ intersects with the sides $AB,BC$ at points $D,E$ respectively. Let $ \frac{BD}{CE}=\frac{3}{2}$, $BE=4$, $AD=5$ and $AC=2\sqrt{7} $. Find the angle $ \angle BDC$.

1988 Romania Team Selection Test, 15

Let $[a,b]$ be a given interval of real numbers not containing integers. Prove that there exists $N>0$ such that $[Na,Nb]$ does not contain integer numbers and the length of the interval $[Na,Nb]$ exceedes $\dfrac 16$.

Today's calculation of integrals, 885

Find the infinite integrals as follows. (1) 2013 Hiroshima City University entrance exam/Informatic Science $\int \frac{x^2}{2-x^2}dx$ (2) 2013 Kanseigakuin University entrance exam/Science and Technology $\int x^4\ln x\ dx$ (3) 2013 Shinsyu University entrance exam/Textile Science and Technology, Second-exam $\int \frac{\cos ^ 3 x}{\sin ^ 2 x}\ dx$

2002 China Team Selection Test, 2

$ A_1$, $ B_1$ and $ C_1$ are the projections of the vertices $ A$, $ B$ and $ C$ of triangle $ ABC$ on the respective sides. If $ AB \equal{} c$, $ AC \equal{} b$, $ BC \equal{} a$ and $ AC_1 \equal{} 2t AB$, $ BA_1 \equal{} 2rBC$, $ CB_1 \equal{} 2 \mu AC$. Prove that: \[ \frac {a^2}{b^2} \cdot \left( \frac {t}{1 \minus{} 2t} \right)^2 \plus{} \frac {b^2}{c^2} \cdot \left( \frac {r}{1 \minus{} 2r} \right)^2 \plus{} \frac {c^2}{a^2} \cdot \left( \frac {\mu}{1 \minus{} 2\mu} \right)^2 \plus{} 16tr \mu \geq 1 \]

2010 Today's Calculation Of Integral, 590

Evaluate $ \int_0^{\frac{\pi}{8}} \frac{(\cos \theta \plus{}\sin \theta)^{\frac{3}{2}}\minus{}(\cos \theta \minus{}\sin \theta)^{\frac{3}{2}}}{\sqrt{\cos 2\theta}}\ d\theta$.

2001 Canada National Olympiad, 3

Let $ABC$ be a triangle with $AC > AB$. Let $P$ be the intersection point of the perpendicular bisector of $BC$ and the internal angle bisector of $\angle{A}$. Construct points $X$ on $AB$ (extended) and $Y$ on $AC$ such that $PX$ is perpendicular to $AB$ and $PY$ is perpendicular to $AC$. Let $Z$ be the intersection point of $XY$ and $BC$. Determine the value of $\frac{BZ}{ZC}$.

2003 Romania Team Selection Test, 7

Find all integers $a,b,m,n$, with $m>n>1$, for which the polynomial $f(X)=X^n+aX+b$ divides the polynomial $g(X)=X^m+aX+b$. [i]Laurentiu Panaitopol[/i]

2009 Princeton University Math Competition, 1

Find 100 times the area of a regular dodecagon inscribed in a unit circle. Round your answer to the nearest integer if necessary. [asy] defaultpen(linewidth(0.7)); real theta = 17; pen dr = rgb(0.8,0,0), dg = rgb(0,0.6,0), db = rgb(0,0,0.6)+linewidth(1); draw(unitcircle,dg); for(int i = 0; i < 12; ++i) { draw(dir(30*i+theta)--dir(30*(i+1)+theta), db); dot(dir(30*i+theta),Fill(rgb(0.8,0,0))); } dot(dir(theta),Fill(dr)); dot((0,0),Fill(dr)); [/asy]

1982 IMO Longlists, 13

A regular $n$-gonal truncated pyramid is circumscribed around a sphere. Denote the areas of the base and the lateral surfaces of the pyramid by $S_1, S_2$, and $S$, respectively. Let $\sigma$ be the area of the polygon whose vertices are the tangential points of the sphere and the lateral faces of the pyramid. Prove that \[\sigma S = 4S_1S_2 \cos^2 \frac{\pi}{n}.\]

2008 AIME Problems, 4

There exist unique positive integers $ x$ and $ y$ that satisfy the equation $ x^2 \plus{} 84x \plus{} 2008 \equal{} y^2$. Find $ x \plus{} y$.

2014 Singapore Senior Math Olympiad, 32

Determine the maximum value of $\frac{8(x+y)(x^3+y^3)}{(x^2+y^2)^2}$ for all $(x,y)\neq (0,0)$

1998 Vietnam National Olympiad, 2

Find minimum value of $F(x,y)=\sqrt{(x+1)^{2}+(y-1)^{2}}+\sqrt{(x-1)^{2}+(y+1)^{2}}+\sqrt{(x+2)^{2}+(y+2)^{2}}$, where $x,y\in\mathbb{R}$.

1979 Chisinau City MO, 183

Prove the identity $\sin^3 a \cos 3a + \cos^3 a \sin 3a=\frac{3}{4}\sin 4a.$

2013 Today's Calculation Of Integral, 869

Let $I_n=\frac{1}{n+1}\int_0^{\pi} x(\sin nx+n\pi\cos nx)dx\ \ (n=1,\ 2,\ \cdots).$ Answer the questions below. (1) Find $I_n.$ (2) Find $\sum_{n=1}^{\infty} I_n.$

2009 Albania Team Selection Test, 1

An equilateral triangle has inside it a point with distances 5,12,13 from the vertices . Find its side.

2006 All-Russian Olympiad, 3

On a $49\times 69$ rectangle formed by a grid of lattice squares, all $50\cdot 70$ lattice points are colored blue. Two persons play the following game: In each step, a player colors two blue points red, and draws a segment between these two points. (Different segments can intersect in their interior.) Segments are drawn this way until all formerly blue points are colored red. At this moment, the first player directs all segments drawn - i. e., he takes every segment AB, and replaces it either by the vector $\overrightarrow{AB}$, or by the vector $\overrightarrow{BA}$. If the first player succeeds to direct all the segments drawn in such a way that the sum of the resulting vectors is $\overrightarrow{0}$, then he wins; else, the second player wins. Which player has a winning strategy?

2015 USAJMO, 5

Let $ABCD$ be a cyclic quadrilateral. Prove that there exists a point $X$ on segment $\overline{BD}$ such that $\angle BAC=\angle XAD$ and $\angle BCA=\angle XCD$ if and only if there exists a point $Y$ on segment $\overline{AC}$ such that $\angle CBD=\angle YBA$ and $\angle CDB=\angle YDA$.

2013 Sharygin Geometry Olympiad, 14

Let $M$, $N$ be the midpoints of diagonals $AC$, $BD$ of a right-angled trapezoid $ABCD$ ($\measuredangle A=\measuredangle D = 90^\circ$). The circumcircles of triangles $ABN$, $CDM$ meet the line $BC$ in the points $Q$, $R$. Prove that the distances from $Q$, $R$ to the midpoint of $MN$ are equal.

2005 All-Russian Olympiad Regional Round, 11.1

Find all pairs of numbers $x, y \in \left( 0, \frac{\pi}{2}\right)$ , satisfying the equality $$\sin x + \sin y = \sin (xy)$$

2017 Korea USCM, 8

$u(t)$ is solution of the following initial value problem. $$\begin{cases} u''(t) + u'(t) = \sin u(t) &\;\;(t>0),\\ u(0)=1,\;\; u'(0)=0 & \end{cases}$$ (1) Show that $u(t)$ and $u'(t)$ are bounded on $t>0$. (2) Find $\lim\limits_{t\to\infty} u(t)$ with proof.

2000 Moldova Team Selection Test, 3

For each positive integer $ n$, evaluate the sum \[ \sum_{k\equal{}0}^{2n}(\minus{}1)^{k}\frac{\binom{4n}{2k}}{\binom{2n}{k}}\]