This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

OMMC POTM, 2024 6

Find the remainder modulo $101$ of $$\left\lfloor \dfrac{1}{(2 \cos \left(\frac{4\pi}{7} \right))^{103}}\right\rfloor$$

1965 AMC 12/AHSME, 36

Given distinct straight lines $ OA$ and $ OB$. From a point in $ OA$ a perpendicular is drawn to $ OB$; from the foot of this perpendicular a line is drawn perpendicular to $ OA$. From the foot of this second perpendicular a line is drawn perpendicular to $ OB$; and so on indefinitely. The lengths of the first and second perpendiculars are $ a$ and $ b$, respectively. Then the sum of the lengths of the perpendiculars approaches a limit as the number of perpendiculars grows beyond all bounds. This limit is: $ \textbf{(A)}\ \frac {b}{a \minus{} b} \qquad \textbf{(B)}\ \frac {a}{a \minus{} b} \qquad \textbf{(C)}\ \frac {ab}{a \minus{} b} \qquad \textbf{(D)}\ \frac {b^2}{a \minus{} b} \qquad \textbf{(E)}\ \frac {a^2}{a \minus{} b}$

2007 Today's Calculation Of Integral, 203

Let $\alpha ,\ \beta$ be the distinct positive roots of the equation of $2x=\tan x$. Evaluate the following definite integral. \[\int_{0}^{1}\sin \alpha x\sin \beta x\ dx \]

2011 Today's Calculation Of Integral, 747

Prove that $\int_0^4 \left(1-\cos \frac{x}{2}\right)e^{\sqrt{x}}dx\leq -2e^2+30.$

2010 Today's Calculation Of Integral, 667

Let $a>1,\ 0\leq x\leq \frac{\pi}{4}$. Find the volume of the solid generated by a rotation of the part bounded by two curves $y=\frac{\sqrt{2}\sin x}{\sqrt{\sin 2x+a}},\ y=\frac{1}{\sqrt{\sin 2x+a}}$ about the $x$-axis. [i]1993 Hiroshima Un iversity entrance exam/Science[/i]

2023 Yasinsky Geometry Olympiad, 1

It is necessary to construct an angle whose sine is three times greater than its cosine. Describe how this can be done.

1963 Kurschak Competition, 2

$A$ is an acute angle. Show that $$\left(1 +\frac{1}{sen A}\right)\left(1 +\frac{1}{cos A}\right)> 5$$

2002 AMC 12/AHSME, 10

Let $f_n(x)=\sin^n x + \cos^n x$. For how many $x$ in $[0,\pi]$ is it true that \[6f_4(x)-4f_6(x)=2f_2(x)?\] $\textbf{(A) }2\qquad\textbf{(B) }4\qquad\textbf{(C) }6\qquad\textbf{(D) }8\qquad\textbf{(E) }\text{more than 8}$

1989 AMC 12/AHSME, 10

Hi guys, I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this: 1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though. 2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary. 3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions: A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh? B. Do NOT go back to the previous problem(s). This causes too much confusion. C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for. 4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving! Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D

2011 Tokyo Instutute Of Technology Entrance Examination, 3

For constant $k>1$, 2 points $X,\ Y$ move on the part of the first quadrant of the line, which passes through $A(1,\ 0)$ and is perpendicular to the $x$ axis, satisfying $AY=kAX$. Let a circle with radius 1 centered on the origin $O(0,\ 0)$ intersect with line segments $OX,\ OY$ at $P,\ Q$ respectively. Express the maximum area of $\triangle{OPQ}$ in terms of $k$. [i]2011 Tokyo Institute of Technology entrance exam, Problem 3[/i]

2005 France Team Selection Test, 2

Two right angled triangles are given, such that the incircle of the first one is equal to the circumcircle of the second one. Let $S$ (respectively $S'$) be the area of the first triangle (respectively of the second triangle). Prove that $\frac{S}{S'}\geq 3+2\sqrt{2}$.

2002 Finnish National High School Mathematics Competition, 1

A function $f$ satisfies $f(\cos x) = \cos (17x)$ for every real $x$. Show that $f(\sin x) =\sin (17x)$ for every $x \in \mathbb{R}.$

2006 Moldova MO 11-12, 5

Let $n\in\mathbb{N}^*$. Solve the equation $\sum_{k=0}^n C_n^k\cos2kx=\cos nx$ in $\mathbb{R}$.

1966 IMO Longlists, 61

Prove that for every natural number $n$, and for every real number $x \neq \frac{k\pi}{2^t}$ ($t=0,1, \dots, n$; $k$ any integer) \[ \frac{1}{\sin{2x}}+\frac{1}{\sin{4x}}+\dots+\frac{1}{\sin{2^nx}}=\cot{x}-\cot{2^nx} \]

2012 Baltic Way, 13

Let $ABC$ be an acute triangle, and let $H$ be its orthocentre. Denote by $H_A$, $H_B$, and $H_C$ the second intersection of the circumcircle with the altitudes from $A$, $B$, and $C$ respectively. Prove that the area of triangle $H_A H_B H_C$ does not exceed the area of triangle $ABC$.

2000 National Olympiad First Round, 21

Let $ABCD$ be a cyclic quadrilateral with $|AB|=26$, $|BC|=10$, $m(\widehat{ABD})=45^\circ$,$m(\widehat{ACB})=90^\circ$. What is the area of $\triangle DAC$ ? $ \textbf{(A)}\ 120 \qquad\textbf{(B)}\ 108 \qquad\textbf{(C)}\ 90 \qquad\textbf{(D)}\ 84 \qquad\textbf{(E)}\ 80 $

2012 Brazil Team Selection Test, 4

Let $ ABC $ be an acute triangle. Denote by $ D $ the foot of the perpendicular line drawn from the point $ A $ to the side $ BC $, by $M$ the midpoint of $ BC $, and by $ H $ the orthocenter of $ ABC $. Let $ E $ be the point of intersection of the circumcircle $ \Gamma $ of the triangle $ ABC $ and the half line $ MH $, and $ F $ be the point of intersection (other than $E$) of the line $ ED $ and the circle $ \Gamma $. Prove that $ \tfrac{BF}{CF} = \tfrac{AB}{AC} $ must hold. (Here we denote $XY$ the length of the line segment $XY$.)

2007 Junior Balkan MO, 2

Let $ABCD$ be a convex quadrilateral with $\angle{DAC}= \angle{BDC}= 36^\circ$ , $\angle{CBD}= 18^\circ$ and $\angle{BAC}= 72^\circ$. The diagonals and intersect at point $P$ . Determine the measure of $\angle{APD}$.

2002 National Olympiad First Round, 25

Let $E$ be a point on side $[AD]$ of rhombus $ABCD$. Lines $AB$ and $CE$ meet at $F$, lines $BE$ and $DF$ meet at $G$. If $m(\widehat{DAB}) = 60^\circ $, what is$m(\widehat{DGB})$? $ \textbf{a)}\ 45^\circ \qquad\textbf{b)}\ 50^\circ \qquad\textbf{c)}\ 60^\circ \qquad\textbf{d)}\ 65^\circ \qquad\textbf{e)}\ 75^\circ $

2010 Contests, 2

Bisectors $AA_1$ and $BB_1$ of a right triangle $ABC \ (\angle C=90^\circ )$ meet at a point $I.$ Let $O$ be the circumcenter of triangle $CA_1B_1.$ Prove that $OI \perp AB.$

1994 National High School Mathematics League, 8

Tags: trigonometry
$x,y\in\left[-\frac{\pi}{4},\frac{\pi}{4}\right],a\in\mathbb{R}$. If $x^3+\sin x-2a=0,4y^3+\sin y \cos y+a=0$, then $\cos (x+2y)=$________.

2010 Argentina Team Selection Test, 2

Let $ABC$ be a triangle with $AB = AC$. The incircle touches $BC$, $AC$ and $AB$ at $D$, $E$ and $F$ respectively. Let $P$ be a point on the arc $\overarc{EF}$ that does not contain $D$. Let $Q$ be the second point of intersection of $BP$ and the incircle of $ABC$. The lines $EP$ and $EQ$ meet the line $BC$ at $M$ and $N$, respectively. Prove that the four points $P, F, B, M$ lie on a circle and $\frac{EM}{EN} = \frac{BF}{BP}$.

1966 AMC 12/AHSME, 6

$AB$ is the diameter of a circle centered at $O$. $C$ is a point on the circle such that angle $BOC$ is $60^\circ$. If the diameter of the circle is $5$ inches, the length of chord $AC$, expressed in inches, is: $\text{(A)} \ 3 \qquad \text{(B)} \ \frac{5\sqrt{2}}{2} \qquad \text{(C)} \frac{5\sqrt3}{2} \ \qquad \text{(D)} \ 3\sqrt3 \qquad \text{(E)} \ \text{none of these}$

2007 Princeton University Math Competition, 10

In triangle $ABC$ with $AB \neq AC$, points $N \in CA$, $M \in AB$, $P \in BC$, and $Q \in BC$ are chosen such that $MP \parallel AC$, $NQ \parallel AB$, $\frac{BP}{AB} = \frac{CQ}{AC}$, and $A, M, Q, P, N$ are concyclic. Find $\angle BAC$.

2000 AMC 10, 7

In rectangle $ ABCD$, $ AD \equal{} 1$, $ P$ is on $ \overline{AB}$, and $ \overline{DB}$ and $ \overline{DP}$ trisect $ \angle ADC$. What is the perimeter of $ \triangle BDP$? [asy]unitsize(2cm); defaultpen(linewidth(.8pt)); dotfactor=4; pair D=(0,0), C=(sqrt(3),0), B=(sqrt(3),1), A=(0,1), P=(sqrt(3)/3,1); pair[] dotted={A,B,C,D,P}; draw(A--B--C--D--cycle); draw(B--D--P); dot(dotted); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$P$",P,N);[/asy]$ \textbf{(A)}\ 3 \plus{} \frac {\sqrt3}{3} \qquad\textbf{(B)}\ 2 \plus{} \frac {4\sqrt3}{3}\qquad\textbf{(C)}\ 2 \plus{} 2\sqrt2\qquad\textbf{(D)}\ \frac {3 \plus{} 3\sqrt5}{2} \qquad\textbf{(E)}\ 2 \plus{} \frac {5\sqrt3}{3}$