Found problems: 560
2013 Olympic Revenge, 5
Consider $n$ lamps clockwise numbered from $1$ to $n$ on a circle.
Let $\xi$ to be a configuration where $0 \le \ell \le n$ random lamps are turned on. A [i]cool procedure[/i] consists in perform, simultaneously, the following operations: for each one of the $\ell$ lamps which are turned on, we verify the number of the lamp; if $i$ is turned on, a [i]signal[/i] of range $i$ is sent by this lamp, and it will be received only by the next $i$ lamps which follow $i$, turned on or turned off, also considered clockwise. At the end of the operations we verify, for each lamp, turned on or turned off, how many signals it has received. If it was reached by an even number of signals, it remains on the same state(that is, if it was turned on, it will be turned on; if it was turned off, it will be turned off). Otherwise, it's state will be changed.
The example in attachment, for $n=4$, ilustrates a configuration where lamps $2$ and $4$ are initially turned on. Lamp $2$ sends signal only for the lamps $3$ e $4$, while lamp $4$ sends signal for lamps $1$, $2$, $3$ e $4$. Therefore, we verify that lamps $1$ e $2$ received only one signal, while lamps $3$ e $4$ received two signals. Therefore, in the next configuration, lamps $1$ e $4$ will be turned on, while lamps $2$ e $3$ will be turned off.
Let $\Psi$ to be the set of all $2^n$ possible configurations, where $0 \le \ell \le n$ random lamps are turned on. We define a function $f: \Psi \rightarrow \Psi$ where, if $\xi$ is a configuration of lamps, then $f(\xi)$ is the configurations obtained after we perform the [i]cool procedure[/i] described above.
Determine all values of $n$ for which $f$ is bijective.
2014 USA TSTST, 4
Let $P(x)$ and $Q(x)$ be arbitrary polynomials with real coefficients, and let $d$ be the degree of $P(x)$. Assume that $P(x)$ is not the zero polynomial. Prove that there exist polynomials $A(x)$ and $B(x)$ such that:
(i) both $A$ and $B$ have degree at most $d/2$
(ii) at most one of $A$ and $B$ is the zero polynomial.
(iii) $\frac{A(x)+Q(x)B(x)}{P(x)}$ is a polynomial with real coefficients. That is, there is some polynomial $C(x)$ with real coefficients such that $A(x)+Q(x)B(x)=P(x)C(x)$.
2017 HMIC, 3
Let $v_1, v_2, \ldots, v_m$ be vectors in $\mathbb{R}^n$, such that each has a strictly positive first coordinate. Consider the following process. Start with the zero vector $w = (0, 0, \ldots, 0) \in \mathbb{R}^n$. Every round, choose an $i$ such that $1 \le i \le m$ and $w \cdot v_i \le 0$, and then replace $w$ with $w + v_i$.
Show that there exists a constant $C$ such that regardless of your choice of $i$ at each step, the process is guaranteed to terminate in (at most) $C$ rounds. The constant $C$ may depend on the vectors $v_1, \ldots, v_m$.
2007 China Western Mathematical Olympiad, 4
Let $ O$ be an interior point of the triangle $ ABC$. Prove that there exist positive integers $ p,q$ and $ r$ such that
\[ |p\cdot\overrightarrow{OA} \plus{} q\cdot\overrightarrow{OB} \plus{} r\cdot\overrightarrow{OC}|<\frac{1}{2007}\]
2010 Putnam, B1
Is there an infinite sequence of real numbers $a_1,a_2,a_3,\dots$ such that
\[a_1^m+a_2^m+a_3^m+\cdots=m\]
for every positive integer $m?$
2001 Romania Team Selection Test, 3
Find the least $n\in N$ such that among any $n$ rays in space sharing a common origin there exist two which form an acute angle.
1986 IMO Longlists, 29
We define a binary operation $\star$ in the plane as follows: Given two points $A$ and $B$ in the plane, $C = A \star B$ is the third vertex of the equilateral triangle ABC oriented positively. What is the relative position of three points $I, M, O$ in the plane if $I \star (M \star O) = (O \star I)\star M$ holds?
1991 Greece National Olympiad, 2
Let $O$ be the circumcenter of triangle $ABC$ and let $A_1,B_1,C_1$ be the midpoints of arcs $BC, CA,AB$ respectively. If $I$ is the incenter of triangle $ABC$, prove that $$\overrightarrow{OI}= \overrightarrow{OA_1}+ \overrightarrow{OB_1}+ \overrightarrow{OC_1}.$$
2014 Purple Comet Problems, 4
Find the least positive integer $n$ such that the prime factorizations of $n$, $n + 1$, and $n + 2$ each have exactly two factors (as $4$ and $6$ do, but $12$ does not).
2008 USAMO, 6
At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form $ 2^k$ for some positive integer $ k$).
2008 Kazakhstan National Olympiad, 2
Suppose that $ B_1$ is the midpoint of the arc $ AC$, containing $ B$, in the circumcircle of $ \triangle ABC$, and let $ I_b$ be the $ B$-excircle's center. Assume that the external angle bisector of $ \angle ABC$ intersects $ AC$ at $ B_2$. Prove that $ B_2I$ is perpendicular to $ B_1I_B$, where $ I$ is the incenter of $ \triangle ABC$.
2012 Pre-Preparation Course Examination, 3
Suppose that $T,U:V\longrightarrow V$ are two linear transformations on the vector space $V$ such that $T+U$ is an invertible transformation. Prove that
$TU=UT=0 \Leftrightarrow \operatorname{rank} T+\operatorname{rank} U=n$.
1996 All-Russian Olympiad, 2
On a coordinate plane are placed four counters, each of whose centers has integer coordinates. One can displace any counter by the vector joining the centers of two of the other counters. Prove that any two preselected counters can be made to coincide by a finite sequence of moves.
[i]Р. Sadykov[/i]
1996 India National Olympiad, 2
Let $C_1$ and $C_2$ be two concentric circles in the plane with radii $R$ and $3R$ respectively. Show that the orthocenter of any triangle inscribed in circle $C_1$ lies in the interior of circle $C_2$. Conversely, show that every point in the interior of $C_2$ is the orthocenter of some triangle inscribed in $C_1$.
1955 Miklós Schweitzer, 1
[b]1.[/b] Let $a_{1}, a_{2}, \dots , a_{n}$ and $b_{1}, b_{2}, \dots , b_{m}$ be $n+m$ unit vectors in the $r$-dimensional Euclidean space $E_{r} (n,m \leq r)$; let $a_{1}, a_{2}, \dots , a_{n}$ as well as $b_{1}, b_{2}, \dots , b_{m}$ be mutually orthogonal. For any vector $x \in E_{r}$, consider
$Tx= \sum_{i=1}^{n}\sum_{k=1}^{m}(x,a_{i})(a_{i},b_{k})b_{k}$
($(a,b)$ denotes the scalar product of $a$ and $b$). Show that the sequence $(T^{k}x)^{\infty}_{ k =0}$, where $T^{0} x= x$ and $T^{k} x = T(T^{k-1}x)$, is convergent and give a geometrical characterization of how the limit depends on $x$. [b](S. 14)[/b]
2023 Simon Marais Mathematical Competition, B3
Let $n$ be a positive integer. Let $A,B,$ and $C$ be three $n$-dimensional vector subspaces of $\mathbb{R}^{2n}$ with the property that $A \cap B = B \cap C = C \cap A = \{0\}$. Prove that there exist bases $\{a_1,a_2, \dots, a_n\}$ of $A$, $\{b_1,b_2, \dots, b_n\}$ of $B$, and $\{c_1,c_2, \dots, c_n\}$ of $C$ with the property that for each $i \in \{1,2, \dots, n\}$, the vectors $a_i,b_i,$ and $c_i$ are linearly dependent.
1994 Irish Math Olympiad, 4
Consider all $ m \times n$ matrices whose all entries are $ 0$ or $ 1$. Find the number of such matrices for which the number of $ 1$-s in each row and in each column is even.
2014 Putnam, 3
Let $A$ be an $m\times n$ matrix with rational entries. Suppose that there are at least $m+n$ distinct prime numbers among the absolute values of the entries of $A.$ Show that the rank of $A$ is at least $2.$
2011 Putnam, B4
In a tournament, 2011 players meet 2011 times to play a multiplayer game. Every game is played by all 2011 players together and ends with each of the players either winning or losing. The standings are kept in two $2011\times 2011$ matrices, $T=(T_{hk})$ and $W=(W_{hk}).$ Initially, $T=W=0.$ After every game, for every $(h,k)$ (including for $h=k),$ if players $h$ and $k$ tied (that is, both won or both lost), the entry $T_{hk}$ is increased by $1,$ while if player $h$ won and player $k$ lost, the entry $W_{hk}$ is increased by $1$ and $W_{kh}$ is decreased by $1.$
Prove that at the end of the tournament, $\det(T+iW)$ is a non-negative integer divisible by $2^{2010}.$
1988 China Team Selection Test, 3
A polygon $\prod$ is given in the $OXY$ plane and its area exceeds $n.$ Prove that there exist $n+1$ points $P_{1}(x_1, y_1), P_{2}(x_2, y_2), \ldots, P_{n+1}(x_{n+1}, y_{n+1})$ in $\prod$ such that $\forall i,j \in \{1, 2, \ldots, n+1\}$, $x_j - x_i$ and $y_j - y_i$ are all integers.
2010 Contests, 1
There are ten coins a line, which are indistinguishable. It is known that two of them are false and have consecutive positions on the line. For each set of positions, you may ask how many false coins it contains. Is it possible to identify the false coins by making only two of those questions, without knowing the answer to the first question before making the second?
2009 Today's Calculation Of Integral, 521
Let $ t$ be a positive number. Draw two tangent lines from the point $ (t, \minus{} 1)$ to the parabpla $ y \equal{} x^2$. Denote $ S(t)$ the area bounded by the tangents line and the parabola. Find the minimum value of $ \frac {S(t)}{\sqrt {t}}$.
2006 USA Team Selection Test, 6
Let $ABC$ be a triangle. Triangles $PAB$ and $QAC$ are constructed outside of triangle $ABC$ such that $AP = AB$ and $AQ = AC$ and $\angle{BAP}= \angle{CAQ}$. Segments $BQ$ and $CP$ meet at $R$. Let $O$ be the circumcenter of triangle $BCR$. Prove that $AO \perp PQ.$
1990 IMO Longlists, 15
Given a triangle $ ABC$. Let $ G$, $ I$, $ H$ be the centroid, the incenter and the orthocenter of triangle $ ABC$, respectively. Prove that $ \angle GIH > 90^{\circ}$.
2020 Mexico National Olympiad, 5
A four-element set $\{a, b, c, d\}$ of positive integers is called [i]good[/i] if there are two of them such that their product is a mutiple of the greatest common divisor of the remaining two. For example, the set $\{2, 4, 6, 8\}$ is good since the greatest common divisor of $2$ and $6$ is $2$, and it divides $4\times 8=32$.
Find the greatest possible value of $n$, such that any four-element set with elements less than or equal to $n$ is good.
[i]Proposed by Victor and Isaías de la Fuente[/i]