Found problems: 560
2004 All-Russian Olympiad, 2
Prove that there is no finite set which contains more than $ 2N,$ with $ N > 3,$ pairwise non-collinear vectors of the plane, and to which the following two characteristics apply:
1) for $ N$ arbitrary vectors from this set there are always further $ N\minus{}1$ vectors from this set so that the sum of these is $ 2N\minus{}1$ vectors is equal to the zero-vector;
2) for $ N$ arbitrary vectors from this set there are always further $ N$ vectors from this set so that the sum of these is $ 2N$ vectors is equal to the zero-vector.
2018 International Olympic Revenge, 3
When the IMO is over and students want to relax, they all do the same thing:
download movies from the internet. There is a positive number of rooms with internet
routers at the hotel, and each student wants to download a positive number of bits. The
load of a room is defined as the total number of bits to be downloaded from that room.
Nobody likes slow internet, and in particular each student has a displeasure equal to the
product of her number of bits and the load of her room. The misery of the group is
defined as the sum of the students’ displeasures.
Right after the contest, students gather in the hotel lobby to decide who goes to which
room. After much discussion they reach a balanced configuration: one for which no student
can decrease her displeasure by unilaterally moving to another room. The misery
of the group is computed to be $M_1$, and right when they seemed satisfied, Gugu arrived
with a serendipitous smile and proposed another configuration that achieved misery $M_2$.
What is the maximum value of $M_1/M_2$ taken over all inputs to this problem?
[i]Proposed by Victor Reis (proglote), Brazil.[/i]
1966 IMO Shortlist, 22
Let $P$ and $P^{\prime }$ be two parallelograms with equal area, and let their sidelengths be $a,$ $b$ and $a^{\prime },$ $b^{\prime }.$ Assume that $a^{\prime }\leq a\leq b\leq b^{\prime },$ and moreover, it is possible to place the segment $b^{\prime }$ such that it completely lies in the interior of the parallelogram $P.$
Show that the parallelogram $P$ can be partitioned into four polygons such that these four polygons can be composed again to form the parallelogram $%
P^{\prime }.$
2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 1
Introduce a standard scalar product in $\mathbb{R}^4.$ Let $V$ be a partial vector space in $\mathbb{R}^4$ produced by $\left(
\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}
\right),\left(
\begin{array}{c}
1 \\-1 \\
1 \\
-1
\end{array}
\right).$
Find a pair of base of orthogonal complement $W$ for $V$ in $\mathbb{R}^4.$
2012 China Second Round Olympiad, 1
Let $P$ be a point on the graph of the function $y=x+\frac{2}{x}(x>0)$. $PA,PB$ are perpendicular to line $y=x$ and $x=0$, respectively, the feet of perpendicular being $A$ and $B$. Find the value of $\overrightarrow{PA}\cdot \overrightarrow{PB}$.
1985 Czech And Slovak Olympiad IIIA, 3
If $\overrightarrow{u_1},\overrightarrow{u_2}, ...,\overrightarrow{u_n}$ be vectors in the plane such that the sum of their lengths is at least $1$, then between them we find vectors whose sum is a vector of length at least $\sqrt2/8$. Prove it.
2007 Romania National Olympiad, 1
Let $A,B\in\mathcal{M}_{2}(\mathbb{R})$ (real $2\times 2$ matrices), that satisfy $A^{2}+B^{2}=AB$. Prove that $(AB-BA)^{2}=O_{2}$.
1993 China National Olympiad, 4
We are given a set $S=\{z_1,z_2,\cdots ,z_{1993}\}$, where $z_1,z_2,\cdots ,z_{1993}$ are nonzero complex numbers (also viewed as nonzero vectors in the plane). Prove that we can divide $S$ into some groups such that the following conditions are satisfied:
(1) Each element in $S$ belongs and only belongs to one group;
(2) For any group $p$, if we use $T(p)$ to denote the sum of all memebers in $p$, then for any memeber $z_i (1\le i \le 1993)$ of $p$, the angle between $z_i$ and $T(p)$ does not exceed $90^{\circ}$;
(3) For any two groups $p$ and $q$, the angle between $T(p)$ and $T(q)$ exceeds $90^{\circ}$ (use the notation introduced in (2)).
1999 Iran MO (2nd round), 2
$ABC$ is a triangle with $\angle{B}>45^{\circ}$ , $\angle{C}>45^{\circ}$. We draw the isosceles triangles $CAM,BAN$ on the sides $AC,AB$ and outside the triangle, respectively, such that $\angle{CAM}=\angle{BAN}=90^{\circ}$. And we draw isosceles triangle $BPC$ on the side $BC$ and inside the triangle such that $\angle{BPC}=90^{\circ}$. Prove that $\Delta{MPN}$ is an isosceles triangle, too, and $\angle{MPN}=90^{\circ}$.
2023 China Second Round, 4
if three non-zero vectors on a plane $\vec{a},\vec{b},\vec{c}$ satisfy:
(a) $\vec{a}\bot\vec{b}$
(b) $\vec{b}\cdot\vec{c}=2|\vec{a}|$
(c) $\vec{c}\cdot\vec{a}=3|\vec{b}|$
find out the minimum of $|\vec{c}|$
2003 Iran MO (3rd Round), 26
Circles $ C_1,C_2$ intersect at $ P$. A line $ \Delta$ is drawn arbitrarily from $ P$ and intersects with $ C_1,C_2$ at $ B,C$. What is locus of $ A$ such that the median of $ AM$ of triangle $ ABC$ has fixed length $ k$.
2003 Iran MO (3rd Round), 15
Assume $m\times n$ matrix which is filled with just 0, 1 and any two row differ in at least $n/2$ members, show that $m \leq 2n$.
( for example the diffrence of this two row is only in one index
110
100)
[i]Edited by Myth[/i]
2018 Korea USCM, 1
Given vector $\mathbf{u}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right)\in\mathbb{R}^3$ and recursively defined sequence of vectors $\{\mathbf{v}_n\}_{n\geq 0}$
$$\mathbf{v}_0 = (1,2,3),\quad \mathbf{v}_n = \mathbf{u}\times\mathbf{v}_{n-1}$$
Evaluate the value of infinite series $\sum_{n=1}^\infty (3,2,1)\cdot \mathbf{v}_{2n}$.
1967 IMO Shortlist, 5
Prove that for an arbitrary pair of vectors $f$ and $g$ in the space the inequality
\[af^2 + bfg +cg^2 \geq 0\]
holds if and only if the following conditions are fulfilled:
\[a \geq 0, \quad c \geq 0, \quad 4ac \geq b^2.\]
1979 IMO Longlists, 20
Show that for any vectors $a, b$ in Euclidean space,
\[|a \times b|^3 \leq \frac{3 \sqrt 3}{8} |a|^2 |b|^2 |a-b|^2\]
Remark. Here $\times$ denotes the vector product.
2000 Mongolian Mathematical Olympiad, Problem 2
Let $n\ge2$. For any two $n$-vectors $\vec x=(x_1,\ldots,x_n)$ and $\vec y=(y_1,\ldots,y_n)$, we define
$$f\left(\vec x,\vec y\right)=x_1\overline{y_1}-\sum_{i=2}^nx_i\overline{y_i}.$$Prove that if $f\left(\vec x,\vec x\right)\ge0$, and $f\left(\vec y,\vec y\right)\ge0$, then $\left|f\left(\vec x,\vec y\right)\right|^2\ge f\left(\vec x,\vec x\right)f\left(\vec y,\vec y\right)$.
JBMO Geometry Collection, 2011
Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB,CD$ such that
\[\tfrac{AB}{AE}=\tfrac{CD}{DF}=n\]
If $S$ is the area of $AEFD$ show that ${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$
2019 Romania National Olympiad, 2
Find all natural numbers which are the cardinal of a set of nonzero Euclidean vectors whose sum is $ 0, $ the sum of any two of them is nonzero, and their magnitudes are equal.
1982 AMC 12/AHSME, 18
In the adjoining figure of a rectangular solid, $\angle DHG=45^\circ$ and $\angle FHB=60^\circ$. Find the cosine of $\angle BHD$.
[asy]
size(200);
import three;defaultpen(linewidth(0.7)+fontsize(10));
currentprojection=orthographic(1/3+1/10,1-1/10,1/3);
real r=sqrt(3);
triple A=(0,0,r), B=(0,r,r), C=(1,r,r), D=(1,0,r), E=O, F=(0,r,0), G=(1,0,0), H=(1,r,0);
draw(D--G--H--D--A--B--C--D--B--F--H--B^^C--H);
draw(A--E^^G--E^^F--E, linetype("4 4"));
label("$A$", A, N);
label("$B$", B, dir(0));
label("$C$", C, N);
label("$D$", D, W);
label("$E$", E, NW);
label("$F$", F, S);
label("$G$", G, W);
label("$H$", H, S);
triple H45=(1,r-0.15,0.1), H60=(1-0.05, r, 0.07);
label("$45^\circ$", H45, dir(125), fontsize(8));
label("$60^\circ$", H60, dir(25), fontsize(8));[/asy]
$\textbf {(A) } \frac{\sqrt{3}}{6} \qquad \textbf {(B) } \frac{\sqrt{2}}{6} \qquad \textbf {(C) } \frac{\sqrt{6}}{3} \qquad \textbf {(D) } \frac{\sqrt{6}}{4} \qquad \textbf {(E) } \frac{\sqrt{6}-\sqrt{2}}{4}$
2010 IMC, 5
Suppose that for a function $f: \mathbb{R}\to \mathbb{R}$ and real numbers $a<b$ one has $f(x)=0$ for all $x\in (a,b).$ Prove that $f(x)=0$ for all $x\in \mathbb{R}$ if
\[\sum^{p-1}_{k=0}f\left(y+\frac{k}{p}\right)=0\]
for every prime number $p$ and every real number $y.$
1991 Arnold's Trivium, 94
Decompose a $5$-dimensional real linear space into the irreducible invariant subspaces of the group generated by cyclic permutations of the basis vectors.
2006 Moldova MO 11-12, 6
Sequences $(x_n)_{n\ge1}$, $(y_n)_{n\ge1}$ satisfy the relations $x_n=4x_{n-1}+3y_{n-1}$ and $y_n=2x_{n-1}+3y_{n-1}$ for $n\ge1$. If $x_1=y_1=5$ find $x_n$ and $y_n$.
Calculate $\lim_{n\rightarrow\infty}\frac{x_n}{y_n}$.
1992 Vietnam Team Selection Test, 3
Let $ABC$ a triangle be given with $BC = a$, $CA = b$, $AB = c$ ($a \neq b \neq c \neq a$). In plane ($ABC$) take the points $A'$, $B'$, $C'$ such that:
[b]I.[/b] The pairs of points $A$ and $A'$, $B$ and $B'$, $C$ and $C'$ either all lie in one side either all lie in different sides under the lines $BC$, $CA$, $AB$ respectively;
[b]II.[/b] Triangles $A'BC$, $B'CA$, $C'AB$ are similar isosceles triangles.
Find the value of angle $A'BC$ as function of $a, b, c$ such that lengths $AA', BB', CC'$ are not sides of an triangle. (The word "triangle" must be understood in its ordinary meaning: its vertices are not collinear.)
2014 Purple Comet Problems, 27
Five men and five women stand in a circle in random order. The probability that every man stands next to at least one woman is $\tfrac m n$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2012 China Team Selection Test, 2
Given two integers $m,n$ which are greater than $1$. $r,s$ are two given positive real numbers such that $r<s$. For all $a_{ij}\ge 0$ which are not all zeroes,find the maximal value of the expression
\[f=\frac{(\sum_{j=1}^{n}(\sum_{i=1}^{m}a_{ij}^s)^{\frac{r}{s}})^{\frac{1}{r}}}{(\sum_{i=1}^{m})\sum_{j=1}^{n}a_{ij}^r)^{\frac{s}{r}})^{\frac{1}{s}}}.\]