This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 560

2011 IMC, 5

Let $n$ be a positive integer and let $V$ be a $(2n-1)$-dimensional vector space over the two-element field. Prove that for arbitrary vectors $v_1,\dots,v_{4n-1} \in V,$ there exists a sequence $1\leq i_1<\dots<i_{2n}\leq 4n-1$ of indices such that $v_{i_1}+\dots+v_{i_{2n}}=0.$

2008 Romania Team Selection Test, 3

Show that each convex pentagon has a vertex from which the distance to the opposite side of the pentagon is strictly less than the sum of the distances from the two adjacent vertices to the same side. [i]Note[/i]. If the pentagon is labeled $ ABCDE$, the adjacent vertices of $ A$ are $ B$ and $ E$, the ones of $ B$ are $ A$ and $ C$ etc.

2013 Online Math Open Problems, 30

Pairwise distinct points $P_1,P_2,\ldots, P_{16}$ lie on the perimeter of a square with side length $4$ centered at $O$ such that $\lvert P_iP_{i+1} \rvert = 1$ for $i=1,2,\ldots, 16$. (We take $P_{17}$ to be the point $P_1$.) We construct points $Q_1,Q_2,\ldots,Q_{16}$ as follows: for each $i$, a fair coin is flipped. If it lands heads, we define $Q_i$ to be $P_i$; otherwise, we define $Q_i$ to be the reflection of $P_i$ over $O$. (So, it is possible for some of the $Q_i$ to coincide.) Let $D$ be the length of the vector $\overrightarrow{OQ_1} + \overrightarrow{OQ_2} + \cdots + \overrightarrow{OQ_{16}}$. Compute the expected value of $D^2$. [i]Ray Li[/i]

2006 IMC, 4

Let $v_{0}$ be the zero ector and let $v_{1},...,v_{n+1}\in\mathbb{R}^{n}$ such that the Euclidian norm $|v_{i}-v_{j}|$ is rational for all $0\le i,j\le n+1$. Prove that $v_{1},...,v_{n+1}$ are linearly dependent over the rationals.

2009 Romania Team Selection Test, 2

Let $m<n$ be two positive integers, let $I$ and $J$ be two index sets such that $|I|=|J|=n$ and $|I\cap J|=m$, and let $u_k$, $k\in I\cup J$ be a collection of vectors in the Euclidean plane such that \[|\sum_{i\in I}u_i|=1=|\sum_{j\in J}u_j|.\] Prove that \[\sum_{k\in I\cup J}|u_k|^2\geq \frac{2}{m+n}\] and find the cases of equality.

1992 Tournament Of Towns, (331) 3

Tags: vector , geometry
Let $O$ be the centre of a regular $n$-gon whose vertices are labelled $A_1$,$...$, $A_n$. Let $a_1>a_2>...>a_n>0$. Prove that the vector $$a_1\overrightarrow{OA_1}+a_2\overrightarrow{OA_2}+...+a_n\overrightarrow{OA_n}$$ is not equal to the zero vector. (D. Fomin, Alexey Kirichenko)

2008 All-Russian Olympiad, 8

On the cartesian plane are drawn several rectangles with the sides parallel to the coordinate axes. Assume that any two rectangles can be cut by a vertical or a horizontal line. Show that it's possible to draw one horizontal and one vertical line such that each rectangle is cut by at least one of these two lines.

2014 Putnam, 6

Let $n$ be a positive integer. What is the largest $k$ for which there exist $n\times n$ matrices $M_1,\dots,M_k$ and $N_1,\dots,N_k$ with real entries such that for all $i$ and $j,$ the matrix product $M_iN_j$ has a zero entry somewhere on its diagonal if and only if $i\ne j?$

1999 AIME Problems, 15

Consider the paper triangle whose vertices are $(0,0), (34,0),$ and $(16,24).$ The vertices of its midpoint triangle are the midpoints of its sides. A triangular pyramid is formed by folding the triangle along the sides of its midpoint triangle. What is the volume of this pyramid?

2011 JBMO Shortlist, 6

Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB,CD$ such that \[\tfrac{AB}{AE}=\tfrac{CD}{DF}=n\] If $S$ is the area of $AEFD$ show that ${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$

2025 District Olympiad, P1

Let $ABCD$ be a parallelogram of center $O$. Prove that for any point $M\in (AB)$, there exist unique points $N\in (OC)$ and $P\in (OD)$ such that $O$ is the center of mass of $\triangle MNP$.

2014 PUMaC Combinatorics A, 5

Tags: vector
What is the size of the largest subset $S'$ of $S = \{2^x3^y5^z : 0 \le x,y,z \le 4\}$ such that there are no distinct elements $p,q \in S'$ with $p \mid q$?

2002 Romania National Olympiad, 3

Let $A\in M_4(C)$ be a non-zero matrix. $a)$ If $\text{rank}(A)=r<4$, prove the existence of two invertible matrices $U,V\in M_4(C)$, such that: \[UAV=\begin{pmatrix}I_r&0\\0&0\end{pmatrix}\] where $I_r$ is the $r$-unit matrix. $b)$ Show that if $A$ and $A^2$ have the same rank $k$, then the matrix $A^n$ has rank $k$, for any $n\ge 3$.

2004 Germany Team Selection Test, 3

We attach to the vertices of a regular hexagon the numbers $1$, $0$, $0$, $0$, $0$, $0$. Now, we are allowed to transform the numbers by the following rules: (a) We can add an arbitrary integer to the numbers at two opposite vertices. (b) We can add an arbitrary integer to the numbers at three vertices forming an equilateral triangle. (c) We can subtract an integer $t$ from one of the six numbers and simultaneously add $t$ to the two neighbouring numbers. Can we, just by acting several times according to these rules, get a cyclic permutation of the initial numbers? (I. e., we started with $1$, $0$, $0$, $0$, $0$, $0$; can we now get $0$, $1$, $0$, $0$, $0$, $0$, or $0$, $0$, $1$, $0$, $0$, $0$, or $0$, $0$, $0$, $1$, $0$, $0$, or $0$, $0$, $0$, $0$, $1$, $0$, or $0$, $0$, $0$, $0$, $0$, $1$ ?)

1962 IMO, 3

Consider the cube $ABCDA'B'C'D'$ ($ABCD$ and $A'B'C'D'$ are the upper and lower bases, repsectively, and edges $AA', BB', CC', DD'$ are parallel). The point $X$ moves at a constant speed along the perimeter of the square $ABCD$ in the direction $ABCDA$, and the point $Y$ moves at the same rate along the perimiter of the square $B'C'CB$ in the direction $B'C'CBB'$. Points $X$ and $Y$ begin their motion at the same instant from the starting positions $A$ and $B'$, respectively. Determine and draw the locus of the midpionts of the segments $XY$.

2012 Pre-Preparation Course Examination, 6

Suppose that $V$ is a finite dimensional vector space over the real numbers equipped with an inner product and $S:V\times V \longrightarrow \mathbb R$ is a skew symmetric function that is linear for each variable when others are kept fixed. Prove there exists a linear transformation $T:V \longrightarrow V$ such that $\forall u,v \in V: S(u,v)=<u,T(v)>$. We know that there always exists $v\in V$ such that $W=<v,T(v)>$ is invariant under $T$. (it means $T(W)\subseteq W$). Prove that if $W$ is invariant under $T$ then the following subspace is also invariant under $T$: $W^{\perp}=\{v\in V:\forall u\in W <v,u>=0\}$. Prove that if dimension of $V$ is more than $3$, then there exist a two dimensional subspace $W$ of $V$ such that the volume defined on it by function $S$ is zero!!!! (This is the way that we can define a two dimensional volume for each subspace $V$. This can be done for volumes of higher dimensions.)

2011 Bogdan Stan, 2

Show that among any nine complex numbers whose affixes in the complex plane lie on the unit circle, there are at least two of them such that the modulus of their sum is greater than $ \sqrt 2. $ [i]Ion Tecu[/i]

2024 District Olympiad, P1

Tags: vector , geometry
Let $ABCD$ be a convex quadrilateral whose diagonals intersect at $O.$ Given that \[\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AO}=\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{OC},\]prove that $ABCD$ is a parallelogram.

2003 China Western Mathematical Olympiad, 2

Let $ a_1, a_2, \ldots, a_{2n}$ be $ 2n$ real numbers satisfying the condition $ \sum_{i \equal{} 1}^{2n \minus{} 1} (a_{i \plus{} 1} \minus{} a_i)^2 \equal{} 1$. Find the greatest possible value of $ (a_{n \plus{} 1} \plus{} a_{n \plus{} 2} \plus{} \ldots \plus{} a_{2n}) \minus{} (a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n)$.

2004 Germany Team Selection Test, 1

Let $ABC$ be an acute triangle, and let $M$ and $N$ be two points on the line $AC$ such that the vectors $MN$ and $AC$ are identical. Let $X$ be the orthogonal projection of $M$ on $BC$, and let $Y$ be the orthogonal projection of $N$ on $AB$. Finally, let $H$ be the orthocenter of triangle $ABC$. Show that the points $B$, $X$, $H$, $Y$ lie on one circle.

2012 Purple Comet Problems, 20

Square $ABCD$ has side length $68$. Let $E$ be the midpoint of segment $\overline{CD}$, and let $F$ be the point on segment $\overline{AB}$ a distance $17$ from point $A$. Point $G$ is on segment $\overline{EF}$ so that $\overline{EF}$ is perpendicular to segment $\overline{GD}$. The length of segment $\overline{BG}$ can be written as $m\sqrt{n}$ where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

1991 Vietnam Team Selection Test, 3

Let $\{x\}$ be a sequence of positive reals $x_1, x_2, \ldots, x_n$, defined by: $x_1 = 1, x_2 = 9, x_3=9, x_4=1$. And for $n \geq 1$ we have: \[x_{n+4} = \sqrt[4]{x_{n} \cdot x_{n+1} \cdot x_{n+2} \cdot x_{n+3}}.\] Show that this sequence has a finite limit. Determine this limit.

2015 AMC 10, 17

A line that passes through the origin intersects both the line $x=1$ and the line $y=1+\frac{\sqrt{3}}{3}x$. The three lines create an equilateral triangle. What is the perimeter of the triangle? $ \textbf{(A) }2\sqrt{6}\qquad\textbf{(B) }2+2\sqrt{3}\qquad\textbf{(C) }6\qquad\textbf{(D) }3+2\sqrt{3}\qquad\textbf{(E) }6+\frac{\sqrt{3}}{3} $

2002 Mediterranean Mathematics Olympiad, 4

If $a, b, c$ are non-negative real numbers with $ a^2 \plus{} b^2 \plus{} c^2 \equal{} 1$, prove that: \[ \frac {a}{b^2 \plus{} 1} \plus{} \frac {b}{c^2 \plus{} 1} \plus{} \frac {c}{a^2 \plus{} 1} \geq \frac {3}{4}(a\sqrt {a} \plus{} b\sqrt {b} \plus{} c\sqrt {c})^2\]

2002 China Western Mathematical Olympiad, 4

Let $ n$ be a positive integer, let the sets $ A_{1},A_{2},\cdots,A_{n \plus{} 1}$ be non-empty subsets of the set $ \{1,2,\cdots,n\}.$ prove that there exist two disjoint non-empty subsets of the set $ \{1,2,\cdots,n \plus{} 1\}$: $ \{i_{1},i_{2},\cdots,i_{k}\}$ and $ \{j_{1},j_{2},\cdots,j_{m}\}$ such that $ A_{i_{1}}\cup A_{i_{2}}\cup\cdots\cup A_{i_{k}} \equal{} A_{j_{1}}\cup A_{j_{2}}\cup\cdots\cup A_{j_{m}}$.