This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1976 All Soviet Union Mathematical Olympiad, 228

There are three straight roads. Three pedestrians are moving along those roads, and they are NOT on one line in the initial moment. Prove that they will be one line not more than twice

1963 Miklós Schweitzer, 8

Let the Fourier series \[ \frac{a_0}{2}+ \sum _{k\geq 1}(a_k\cos kx+b_k \sin kx)\] of a function $ f(x)$ be absolutely convergent, and let \[ a^2_k+b^2_k \geq a_{k+1}^2+b_{k+1}^2 \;(k=1,2,...)\ .\] Show that \[ \frac1h \int_0^{2\pi} (f(x+h)-f(x-h))^2dx \;(h>0)\] is uniformly bounded in $ h$. [K. Tandori]

Durer Math Competition CD Finals - geometry, 2016.C+4

Tags: circles , geometry
The two intersections of the circles $k_i$ and $k_{i + 1}$ are $P_i$ and $Q_i$ ($1 \le i \le 5, k_6 = k_1$). On the circle $k_1$ lies an arbitrary point $A$. Then the points $B, C, D, E, F, G, H, I, J, K$ lie on the circles $k_2, k_3, k_4, k_5, k_1, k_2, k_3, k_4, k_5, k_1$ respectively, such that $AP_1B, BP_2C, CP_3D, DP_4E, EP_5F, F Q_1G, GQ_2H, HQ_3I, IQ_4J, JQ_5K$ are straight line triplets. Prove that that $K = A$. [img]https://1.bp.blogspot.com/-g6rF1hcPE08/X9j1SEJT7-I/AAAAAAAAMzc/2rWIiWTHZ34zfWVeGujkCxRW1hSCw5oOwCLcBGAsYHQ/s16000/2016%2BDurer%2BC..4.png[/img] [i]Circles can have different radii, and They can be located in different ways from the figure. We assume that during editing none neither of the two points mentioned above coincide.[/i]

2016 Belarus Team Selection Test, 1

Prove for positive $a,b,c$ that $$ (a^2+\frac{b^2}{c^2})(b^2+\frac{c^2}{a^2})(c^2+\frac{a^2}{b^2}) \geq abc (a+\frac{1}{a})(b+\frac{1}{b})(c+\frac{1}{c})$$

1994 All-Russian Olympiad Regional Round, 9.3

Does there exist a quadratic trinomial $p(x)$ with integer coefficients such that, for every natural number $n$ whose decimal representation consists of digits $1$, $p(n)$ also consists only of digits $1$?

2018 MIG, 3

Tags:
$6$ cats can eat $6$ fish in $1$ day, and $c$ cats can eat $91$ fish in $d$ days. Given that $c$ and $d$ are both whole numbers, and the number of cats, $c$, is more than $1$ but less than $10$, find $c + d$.

2016 Macedonia National Olympiad, Problem 4

Tags: geometry
A segment $AB$ is given and it's midpoint $K$. On the perpendicular line to $AB$, passing through $K$ a point $C$, different from $K$ is chosen. Let $N$ be the intersection of $AC$ and the line passing through $B$ and the midpoint of $CK$. Let $U$ be the intersection point of $AB$ and the line passing through $C$ and $L$, the midpoint of $BN$. Prove that the ratio of the areas of the triangles $CNL$ and $BUL$, is independent of the choice of the point $C$.

2020 Brazil Undergrad MO, Problem 3

Let $\mathbb{F}_{13} = {\overline{0}, \overline{1}, \cdots, \overline{12}}$ be the finite field with $13$ elements (with sum and product modulus $13$). Find how many matrix $A$ of size $5$ x $5$ with entries in $\mathbb{F}_{13}$ exist such that $$A^5 = I$$ where $I$ is the identity matrix of order $5$

1994 India Regional Mathematical Olympiad, 2

In a triangle $ABC$, the incircle touches the sides $BC, CA, AB$ at $D, E, F$ respectively. If the radius if the incircle is $4$ units and if $BD, CE , AF$ are consecutive integers, find the sides of the triangle $ABC$.

1986 India National Olympiad, 4

Find the least natural number whose last digit is 7 such that it becomes 5 times larger when this last digit is carried to the beginning of the number.

2017 Germany, Landesrunde - Grade 11/12, 5

In a right-angled triangle let $r$ be the inradius and $s_a,s_b$ be the lengths of the medians of the legs $a,b$. Prove the inequality \[ \frac{r^2}{s_a^2+s_b^2} \leq \frac{3-2 \sqrt2}{5}. \]

1964 Poland - Second Round, 3

Prove that if three prime numbers form an arithmetic progression whose difference is not divisible by 6, then the smallest of these numbers is $3 $.

1997 Iran MO (2nd round), 1

Tags: inequalities
Let $x_1,x_2,x_3,x_4$ be positive reals such that $x_1x_2x_3x_4=1$. Prove that: \[ \sum_{i=1}^{4}{x_i^3}\geq\max\{ \sum_{i=1}^{4}{x_i},\sum_{i=1}^{4}{\frac{1}{x_i}} \}. \]

2012 Today's Calculation Of Integral, 812

Let $f(x)=\frac{\cos 2x-(a+2)\cos x+a+1}{\sin x}.$ For constant $a$ such that $\lim_{x\rightarrow 0} \frac{f(x)}{x}=\frac 12$, evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{f(x)}dx.$

2006 Belarusian National Olympiad, 4

Given a quadrilateral $ABCD$ with $\angle ABC = \angle ADC$. Let $BM$ be the altitude of the triangle $ABC$, and $M$ belongs to $AC$. Point $M'$ is marked on the diagonal $AC$ so that $$\frac{AM \cdot CM'}{ AM' \cdot CM}= \frac{AB \cdot CD }{ BC \cdot AD}$$ Prove that the intersection point of $DM'$ and $BM$ coincides with the orthocenter of the triangle $ABC$. (M. Zhikhovich)

2004 Postal Coaching, 5

How many paths from $(0,0)$ to $(n,n)$ of length $2n$ are there with exactly $k$ steps. A step is an occurence of the pair $EN$ in the path

2020 Stars of Mathematics, 3

Determine all integers $n>1$ whose positive divisors add up to a power of $3.$ [i]Andrei Bâra[/i]

2022 Philippine MO, 1

Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ such that \[ f(a-b)f(c-d) + f(a-d)f(b-c) \leq (a-c)f(b-d) \] for all real numbers $a, b, c,$ and $d$.

2005 MOP Homework, 4

A convex $2004$-sided polygon $P$ is given such that no four vertices are cyclic. We call a triangle whose vertices are vertices of $P$ thick if all other $2001$ vertices of $P$ lie inside the circumcircle of the triangle, and thin if they all lie outside its circumcircle. Prove that the number of thick triangles is equal to the number of thin triangles.

2017-2018 SDPC, 3

Let $n > 2$ be a fixed positive integer. For a set $S$ of $n$ points in the plane, let $P(S)$ be the set of perpendicular bisectors of pairs of distinct points in $S$. Call set $S$ [i]complete[/i] if no two (distinct) pairs of points share the same perpendicular bisector, and every pair of lines in $P(S)$ intersects. Let $f(S)$ be the number of distinct intersection points of pairs of lines in $P(S)$. (a) Find all complete sets $S$ such that $f(S) = 1$. (b) Let $S$ be a complete set with $n$ points. Show that if $f(S)>1$, then $f(S) \geq n$.

2024 Singapore Senior Math Olympiad, Q3

Find the smallest positive integer $n$ for which there exist integers $x_{1} < x_{2} <...< x_{n}$ such that every integer from $1000$ to $2000$ can be written as a sum of some of the integers from $x_1,x_2,..,x_n$ without repetition.

2018 ASDAN Math Tournament, 9

Tags: geometry
A circle inscribed within quadrilateral $ABCD$ is tangent to $AB$ at $E$, to $BC$ at $F$, to $CD$ at $G$, and to $DA$ at $H$. Suppose that $AE = 6$, $EB = 30$, $CG = 10$, and $GD = 2$. Compute $EF^2 + F G^2 + GH^2 + HE^2$. .

2022 Regional Competition For Advanced Students, 2

Determine the number of ten-digit positive integers with the following properties: $\bullet$ Each of the digits $0, 1, 2, . . . , 8$ and $9$ is contained exactly once. $\bullet$ Each digit, except $9$, has a neighbouring digit that is larger than it. (Note. For example, in the number $1230$, the digits $1$ and $3$ are the neighbouring digits of $2$ while $2$ and $0$ are the neighbouring digits of $3$. The digits $1$ and $0$ have only one neighbouring digit.) [i](Karl Czakler)[/i]

2006 Federal Competition For Advanced Students, Part 1, 2

Tags: algebra
Show that the sequence $ a_n \equal{} \frac {(n \plus{} 1)^nn^{2 \minus{} n}}{7n^2 \plus{} 1}$ is strictly monotonically increasing, where $ n \equal{} 0,1,2, \dots$.

2017 Czech-Polish-Slovak Match, 2

Let ${\omega}$ be the circumcircle of an acute-angled triangle ${ABC}$. Point ${D}$ lies on the arc ${BC}$ of ${\omega}$ not containing point ${A}$. Point ${E}$ lies in the interior of the triangle ${ABC}$, does not lie on the line ${AD}$, and satis fies ${\angle DBE =\angle ACB}$ and ${\angle DCE = \angle ABC}$. Let ${F}$ be a point on the line ${AD}$ such that lines ${EF}$ and ${BC}$ are parallel, and let ${G}$ be a point on ${\omega}$ different from ${A}$ such that ${AF = FG}$. Prove that points ${D,E, F,G}$ lie on one circle. (Slovakia)