This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

Cono Sur Shortlist - geometry, 2003.G4

In a triangle $ABC$ , let $P$ be a point on its circumscribed circle (on the arc $AC$ that does not contain $B$). Let $H,H_1,H_2$ and $H_3$ be the orthocenters of triangles $ABC, BCP, ACP$ and $ABP$, respectively. Let $L = PB \cap AC$ and $J = HH_2 \cap H_1H_3$. If $M$ and $N$ are the midpoints of $JH$ and $LP$, respectively, prove that $MN$ and $JL$ intersect at their midpoint.

2014 Harvard-MIT Mathematics Tournament, 4

Compute \[\sum_{k=0}^{100}\left\lfloor\dfrac{2^{100}}{2^{50}+2^k}\right\rfloor.\] (Here, if $x$ is a real number, then $\lfloor x\rfloor$ denotes the largest integer less than or equal to $x$.)

2022 Chile TST IMO, 3

Let $n$ be a natural number with more than $2021$ digits, none of which are $8$ or $9$. Suppose that $n$ has no common factors with $2021$. Prove that it is possible to increase one of the digits of $n$ by at most $2$ so that the resulting number is a multiple of 2021.

2013 Mexico National Olympiad, 2

Let $ABCD$ be a parallelogram with the angle at $A$ obtuse. Let $P$ be a point on segment $BD$. The circle with center $P$ passing through $A$ cuts line $AD$ at $A$ and $Y$ and cuts line $AB$ at $A$ and $X$. Line $AP$ intersects $BC$ at $Q$ and $CD$ at $R$. Prove $\angle XPY = \angle XQY + \angle XRY$.

1954 Kurschak Competition, 3

A tournament is arranged amongst a finite number of people. Every person plays every other person just once and each game results in a win to one of the players (there are no draws). Show that there must a person $X$ such that, given any other person $Y$ in the tournament, either $X$ beat $Y$ , or $X$ beat $Z$ and $Z$ beat $Y$ for some $Z$.

2024 Canadian Open Math Challenge, A1

Tags:
Two locations A and B are connected by a 5-mile trail which features a lookout C. A group of 15 hikers started at A and walked along the trail to C. Another group of 10 hikers started at B and walked along the trail to C. The total distance travelled to C by all hikers from the group that started in A was equal to the total distance travelled to C by all hikers from the group that started in B. Find the distance (in miles) from A to C along the trail.

2004 Harvard-MIT Mathematics Tournament, 9

Find the positive constant $c_0$ such that the series \[ \displaystyle\sum_{n = 0}^{\infty} \dfrac {n!}{(cn)^n} \] converges for $c>c_0$ and diverges for $0<c<c_0$.

2009 Jozsef Wildt International Math Competition, W. 26

Tags: inequalities
If $a_i >0$ ($i=1, 2, \cdots , n$) and $\sum \limits_{i=1}^n a_i^k=1$, where $1\leq k\leq n+1$, then $$\sum \limits_{i=1}^n a_i + \frac{1}{\prod \limits_{i=1}^n a_i} \geq n^{1-\frac{1}{k}}+n^{\frac{n}{k}}$$

2023 Belarus - Iran Friendly Competition, 4

Tags: geometry , incircle
Let $\Gamma$ be the incircle of a non-isosceles triangle $ABC$, $I$ be it’s incenter. Let $A_1, B_1, C_1$ be the tangency points of $\Gamma$ with the sides $BC, AC, AB$ respectively. Let $A_2 = \Gamma \cap AA_1$, $M = C_1B_1 \cap AI$, $P$ and $Q$ be the other (different from $A_1$ and $A_2$) intersection points of $\Gamma$ and $A_1M$, $A_2M$ respectively. Prove that $A$, $P$ and $Q$ are colinear.

2007 Moldova National Olympiad, 11.6

Tags: algebra
Define $(b_{n})$ to be: $b_{0}=12$, $b_{1}=\frac{\sqrt{3}}{2}$ adn $b_{n+1}+b_{n-1}=b_{n}\cdot\sqrt{3}$. Find $b_{0}+b_{1}+\dots+b_{2007}$. Note. Maybe this seems too easy, but I want to post all the problems...

2002 India IMO Training Camp, 2

Show that there is a set of $2002$ consecutive positive integers containing exactly $150$ primes. (You may use the fact that there are $168$ primes less than $1000$)

1988 Putnam, A4

Tags:
(a) If every point of the plane is painted one of three colors, do there necessarily exist two points of the same color exactly one inch apart? (b) What if "three'' is replaced by "nine''?

2023 AIME, 9

Tags:
Circles $\omega_1$ and $\omega_2$ intersect at two points $P$ and $Q$, and their common tangent line closer to $P$ intersects $\omega_1$ and $\omega_2$ at points $A$ and $B$, respectively. The line parallel to line $AB$ that passes through $P$ intersects $\omega_1$ and $\omega_2$ for the second time at points $X$ and $Y$, respectively. Suppose $PX = 10, PY = 14,$ and $PQ = 5$. Then the area of trapezoid $XABY$ is $m\sqrt{n}$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m + n$.

2001 APMO, 3

Two equal-sized regular $n$-gons intersect to form a $2n$-gon $C$. Prove that the sum of the sides of $C$ which form part of one $n$-gon equals half the perimeter of $C$. [i]Alternative formulation:[/i] Let two equal regular $n$-gons $S$ and $T$ be located in the plane such that their intersection $S\cap T$ is a $2n$-gon (with $n\ge 3$). The sides of the polygon $S$ are coloured in red and the sides of $T$ in blue. Prove that the sum of the lengths of the blue sides of the polygon $S\cap T$ is equal to the sum of the lengths of its red sides.

2015 Hanoi Open Mathematics Competitions, 4

Tags: perimeter , geometry , area
A regular hexagon and an equilateral triangle have equal perimeter. If the area of the triangle is $4\sqrt3$ square units, the area of the hexagon is (A): $5\sqrt3$, (B): $6\sqrt3$, (C): $7\sqrt3$, (D): $8\sqrt3$, (E): None of the above.

2013 NIMO Problems, 3

Let $ABC$ be a triangle. Prove that there exists a unique point $P$ for which one can find points $D$, $E$ and $F$ such that the quadrilaterals $APBF$, $BPCD$, $CPAE$, $EPFA$, $FPDB$, and $DPEC$ are all parallelograms. [i]Proposed by Lewis Chen[/i]

2022 European Mathematical Cup, 3

Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that $$ f(x^3) + f(y)^3 + f(z)^3 = 3xyz $$ for all real numbers $x$, $y$ and $z$ with $x+y+z=0$.

2023 Princeton University Math Competition, B2

Tags: algebra
The sum $$\sum_{m=1}^{2023} \frac{2m}{m^4+m^2+1}$$ can be expressed as $\tfrac{a}{b}$ for relatively prime positive integers $a,b.$ Find the remainder when $a+b$ is divided by $1000.$

2010 ELMO Problems, 2

2010 MOPpers are assigned numbers 1 through 2010. Each one is given a red slip and a blue slip of paper. Two positive integers, A and B, each less than or equal to 2010 are chosen. On the red slip of paper, each MOPper writes the remainder when the product of A and his or her number is divided by 2011. On the blue slip of paper, he or she writes the remainder when the product of B and his or her number is divided by 2011. The MOPpers may then perform either of the following two operations: [list] [*] Each MOPper gives his or her red slip to the MOPper whose number is written on his or her blue slip. [*] Each MOPper gives his or her blue slip to the MOPper whose number is written on his or her red slip.[/list] Show that it is always possible to perform some number of these operations such that each MOPper is holding a red slip with his or her number written on it. [i]Brian Hamrick.[/i]

2023 Rioplatense Mathematical Olympiad, 6

A group of $4046$ friends will play a videogame tournament. For that, $2023$ of them will go to one room which the computers are labeled with $a_1,a_2,\dots,a_{2023}$ and the other $2023$ friends go to another room which the computers are labeled with $b_1,b_2,\dots,b_{2023}$. The player of computer $a_i$ [b]always[/b] challenges the players of computer $b_i,b_{i+2},b_{i+3},b_{i+4}$(the player doesn't challenge $b_{i+1}$). After the first round, inside both rooms, the players may switch the computers. After the reordering, all the players realize that they are challenging the same players of the first round. Prove that if [b]one[/b] player has [b]not[/b] switched his computer, then all the players have not switched their computers.

2016 Costa Rica - Final Round, N3

Find all natural values of $n$ and $m$, such that $(n -1)2^{n - 1} + 5 = m^2 + 4m$.

2010 Czech And Slovak Olympiad III A, 2

A circular target with a radius of $12$ cm was hit by $19$ shots. Prove that the distance between two hits is less than $7$ cm.

2007 Tournament Of Towns, 5

A triangular pie has the same shape as its box, except that they are mirror images of each other. We wish to cut the pie in two pieces which can t together in the box without turning either piece over. How can this be done if [list][b](a)[/b] one angle of the triangle is three times as big as another; [b](b)[/b] one angle of the triangle is obtuse and is twice as big as one of the acute angles?[/list]

2017 CHKMO, Q2

Let k be a positive integer. Find the number of non-negative integers n less than or equal to $10^k$ satisfying the following conditions: (i) n is divisible by 3; (ii) Each decimal digit of n is one of the digits 2,0,1 or 7.

1992 Yugoslav Team Selection Test, Problem 2

Periodic sequences $(a_n),(b_n),(c_n)$ and $(d_n)$ satisfy the following conditions: $$a_{n+1}=a_n+b_n,\enspace\enspace b_{n+1}=b_n+c_n,$$ $$c_{n+1}=c_n+d_n,\enspace\enspace d_{n+1}=d_n+a_n,$$ for $n=1,2,\ldots$. Prove that $a_2=b_2=c_2=d_2=0$.