This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

LMT Guts Rounds, 2019 F

[u]Round 9[/u] [b]p25.[/b] Find the largest prime factor of $1031301$. [b]p26.[/b] Let $ABCD$ be a trapezoid such that $AB \parallel CD$, $\angle ABC = 90^o$ , $AB = 5$, $BC = 20$, $CD = 15$. Let $X$, $Y$ be the intersection of the circle with diameter $BC$ and segment $AD$. Find the length of $XY$. [b]p27.[/b] A string consisting of $1$’s, $2$’s, and $3$’s is said to be a superpermutation of the string $123$ if it contains every permutation of $123$ as a contiguous substring. Find the smallest possible length of such a superpermutation. [u]Round 10[/u] [b]p28.[/b] Suppose that we have a function $f (x) = x^3 -3x^2 +3x$, and for all $n \ge 1$, $f^n(x)$ is defined by the function $f$ applied $n$ times to $x$. Find the remainder when $f^5(2019)$ is divided by $100$. [b]p29.[/b] A function $f : {1,2, . . . ,10} \to {1,2, . . . ,10}$ is said to be happy if it is a bijection and for all $n \in {1,2, . . . ,10}$, $|n - f (n)| \le 1$. Compute the number of happy functions. [b]p30.[/b] Let $\vartriangle LMN$ have side lengths $LM = 15$, $MN = 14$, and $NL = 13$. Let the angle bisector of $\angle MLN$ meet the circumcircle of $\vartriangle LMN$ at a point $T \ne L$. Determine the area of $\vartriangle LMT$ . [u]Round 11[/u] [b]p31.[/b] Find the value of $$\sum_{d|2200} \tau (d),$$ where $\tau (n)$ denotes the number of divisors of $n$, and where $a|b$ means that $\frac{b}{a}$ is a positive integer. [b]p32.[/b] Let complex numbers $\omega_1,\omega_2, ...,\omega_{2019}$ be the solutions to the equation $x^{2019}-1 = 0$. Evaluate $$\sum^{2019}_{i=1} \frac{1}{1+ \omega_i}.$$ [b]p33.[/b] Let $M$ be a nonnegative real number such that $x^{x^{x^{...}}}$ diverges for all $x >M$, and $x^{x^{x^{...}}}$ converges for all $0 < x \le M$. Find $M$. [u]Round 12[/u] [b]p34.[/b] Estimate the number of digits in ${2019 \choose 1009}$. If your estimate is $E$ and the actual value is $A$, your score for this problem will be $$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$ [b]p35.[/b] You may submit any integer $E$ from $1$ to $30$. Out of the teams that submit this problem, your score will be $$\frac{E}{2 \, (the\,\, number\,\, of\,\, teams\,\, who\,\, chose\,\, E)}$$ [b]p36.[/b] We call a $m \times n$ domino-tiling a configuration of $2\times 1$ dominoes on an $m\times n$ cell grid such that each domino occupies exactly $2$ cells of the grid and all cells of the grid are covered. How many $8 \times 8$ domino-tilings are there? If your estimate is $E$ and the actual value is $A$, your score for this problem will be $$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3166016p28809598]here [/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3166019p28809679]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1993 Moldova Team Selection Test, 8

Inside the parallelogram $ABCD$ points $M, N, K$ and $L{}$ are on sides $AB, BC, CD{}$ and $DA$, respectively. Let $O_1, O_2, O_3$ and $O_4$ be the circumcenters of triangles repesctively $MBN, NCK, KDL$ and $LAM{}$. Prove that the quadrilateral $O_1O_2O_3O_4$ is a parallelogram.

2018 Pan-African Shortlist, G3

Given a triangle $ABC$, let $D$ be the intersection of the line through $A$ perpendicular to $AB$, and the line through $B$ perpendicular to $BC$. Let $P$ be a point inside the triangle. Show that $DAPB$ is cyclic if and only if $\angle BAP = \angle CBP$.

2023 BMT, 3

Compute the second smallest positive whole number that has exactly $6$ positive whole number divisors (including itself).

2018 BMT Spring, 12

Tags:
Let $f : [0, 1] \rightarrow \mathbb{R}$ be a monotonically increasing function such that $$f\left(\frac{x}{3}\right) = \frac{f(x)}{2}$$ $$f(1 0 x) = 2018 - f(x).$$ If $f(1) = 2018$, find $f\left(\dfrac{12}{13}\right)$.

1997 USAMO, 4

To [i]clip[/i] a convex $n$-gon means to choose a pair of consecutive sides $AB, BC$ and to replace them by the three segments $AM, MN$, and $NC$, where $M$ is the midpoint of $AB$ and $N$ is the midpoint of $BC$. In other words, one cuts off the triangle $MBN$ to obtain a convex $(n+1)$-gon. A regular hexagon ${\cal P}_6$ of area 1 is clipped to obtain a heptagon ${\cal P}_7$. Then ${\cal P}_7$ is clipped (in one of the seven possible ways) to obtain an octagon ${\cal P}_8$, and so on. Prove that no matter how the clippings are done, the area of ${\cal P}_n$ is greater than $\frac 13$, for all $n \geq 6$.

Kyiv City MO Juniors 2003+ geometry, 2021.7.3

There are $n$ sticks which have distinct integer length. Suppose that it's possible to form a non-degenerate triangle from any $3$ distinct sticks among them. It's also known that there are sticks of lengths $5$ and $12$ among them. What's the largest possible value of $n$ under such conditions? [i](Proposed by Bogdan Rublov)[/i]

1998 Romania Team Selection Test, 1

Find all monotonic functions $u:\mathbb{R}\rightarrow\mathbb{R}$ which have the property that there exists a strictly monotonic function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[f(x+y)=f(x)u(x)+f(y) \] for all $x,y\in\mathbb{R}$. [i]Vasile Pop[/i]

2014 Saudi Arabia BMO TST, 1

Tags: quadratic , algebra
Find the minimum of $\sum\limits_{k=0}^{40} \left(x+\frac{k}{2}\right)^2$ where $x$ is a real numbers

2006 Princeton University Math Competition, 7

$S$ is a subset of $\{1,2, . . . ,100\}$. What is the maximum number of elements in $S$ such that the product of any two of them is not a perfect square?

2021 IOM, 4

Tags: logic , algebra
Six real numbers $x_1<x_2<x_3<x_4<x_5<x_6$ are given. For each triplet of distinct numbers of those six Vitya calculated their sum. It turned out that the $20$ sums are pairwise distinct; denote those sums by $$s_1<s_2<s_3<\cdots<s_{19}<s_{20}.$$ It is known that $x_2+x_3+x_4=s_{11}$, $x_2+x_3+x_6=s_{15}$ and $x_1+x_2+x_6=s_{m}$. Find all possible values of $m$.

2023 All-Russian Olympiad Regional Round, 9.6

Does there exist a positive integer $m$, such that if $S_n$ denotes the lcm of $1,2, \ldots, n$, then $S_{m+1}=4S_m$?

2010 Purple Comet Problems, 8

Tags:
There are exactly two four-digit numbers that are multiples of three where their first digit is double their second digit, their third digit is three more than their fourth digit, and their second digit is $2$ less than their fourth digit. Find the difference of these two numbers.

2013 NIMO Problems, 1

Tags:
A sequence $a_0, a_1, a_2, \dots$ of real numbers satisfies $a_0 = 999$, $a_1 = -999$, and $a_n = a_{n-1}a_{n+1}$ for each positive integer $n$. Compute $\left\lvert a_1 + a_2 + \dots + a_{1000} \right\rvert$. [i]Proposed by Jeremy Lu[/i]

2024 AMC 12/AHSME, 5

Tags:
A data set containing $20$ numbers, some of which are $6$, has mean $45$. When all the 6s are removed, the data set has mean $66$. How many 6s were in the original data set? $\textbf{(A) }4\qquad\textbf{(B) }5\qquad\textbf{(C) }6\qquad\textbf{(D) }7\qquad\textbf{(E) }8$

1951 Poland - Second Round, 1

In a right triangle $ ABC $, the altitude $ CD $ is drawn from the vertex of the right angle $ C $ and a circle is inscribed in each of the triangles $ ABC $, $ ACD $ and $ BCD $. Prove that the sum of the radii of these circles equals the height $ CD $.

2020 Online Math Open Problems, 5

Tags:
Compute the number of ordered triples of integers $(a,b,c)$ between $1$ and $12$, inclusive, such that, if $$q=a+\frac{1}{b}-\frac{1}{b+\frac{1}{c}},$$ then $q$ is a positive rational number and, when $q$ is written in lowest terms, the numerator is divisible by $13$. [i]Proposed by Ankit Bisain[/i]

2000 Belarus Team Selection Test, 8.1

The diagonals of a convex quadrilateral $ABCD$ with $AB = AC = BD$ intersect at $P$, and $O$ and $I$ are the circumcenter and incenter of $\vartriangle ABP$, respectively. Prove that if $O \ne I$ then $OI$ and $CD$ are perpendicular

2011 Miklós Schweitzer, 1

Let $F_1, F_2, ...$ be Borel-measurable sets on the plane whose union is the whole plane. Prove that there is a natural number n and circle S for which the set $S \cap F_n$ is dense in S. Also show that the statement is not necessarily true if we omit the condition for the measurability of sets $F_j$.

2014 SEEMOUS, Problem 3

Let $A\in M_n(\mathbb{C}) $ and $a\in \mathbb{C} $ such that $A-A^*=2aI_n $, where $A^*=(\overline{A})^T $ and $I_n$ is identity matrix. (i) Show that $|\det A|\ge |a|^n $. (ii) Show that if $|\det A|=|a|^n $ then $A=aI_n$.

2020 Nigerian Senior MO Round 2, 3

$N$ straight lines are drawn on a plane. The $N$ lines can be partitioned into set of lines such that if a line $l$ belongs to a partition set then all lines parallel to $l$ make up the rest of that set. For each $n>=1$,let $a_n$ denote the number of partition sets of size $n$. Now that $N$ lines intersect at certain points on the plane. For each $n>=2$ let $b_n$ denote the number of points that are intersection of exactly $n$ lines. Show that $\sum_{n>= 2}(a_n+b_n)$$\binom{n}{2}$ $=$ $\binom{N}{2}$

1955 Moscow Mathematical Olympiad, 297

Given two distinct nonintersecting circles none of which is inside the other. Find the locus of the midpoints of all segments whose endpoints lie on the circles.

2012 Online Math Open Problems, 5

Congruent circles $\Gamma_1$ and $\Gamma_2$ have radius $2012,$ and the center of $\Gamma_1$ lies on $\Gamma_2.$ Suppose that $\Gamma_1$ and $\Gamma_2$ intersect at $A$ and $B$. The line through $A$ perpendicular to $AB$ meets $\Gamma_1$ and $\Gamma_2$ again at $C$ and $D$, respectively. Find the length of $CD$. [i]Author: Ray Li[/i]

1948 Putnam, B4

For what $\lambda$ does the equation $$ \int_{0}^{1} \min(x,y) f(y)\; dy =\lambda f(x)$$ have continuous solutions which do not vanish identically in $(0,1)?$ What are these solutions?

2012 National Olympiad First Round, 19

Tags: quadratic , algebra
What is the sum of real roots of the equation $x^4-7x^3+14x^2-14x+4=0$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$