Found problems: 85335
2006 JHMT, 2
If two altitudes of a triangle have length $12$ and $4$, what integral lengths can the third altitude attain?
2022 LMT Spring, 5
Find the sum $$\sum^{2020}_{n=1} \gcd (n^3 -2n^2 +2021,n^2 -3n +3).$$
1977 All Soviet Union Mathematical Olympiad, 246
There are $1000$ tickets with the numbers $000, 001, ... , 999$, and $100$ boxes with the numbers $00, 01, ... , 99$. You may put a ticket in a box, if you can obtain the box number from the ticket number by deleting one digit. Prove that:
a) You can put all the tickets in $50$ boxes;
b) $40$ boxes is not enough for that;
c) it is impossible to use less than $50$ boxes.
d) Consider $10000$ $4$-digit tickets, and you are allowed to delete two digits. Prove that $34$ boxes is enough for storing all the tickets.
e) What is the minimal used boxes set in the case of $k$-digit tickets?
2022/2023 Tournament of Towns, P1
Is it possible to arrange $36$ distinct numbers in the cells of a $6 \times 6$ table, so that in each $1\times 5$ rectangle (both vertical and horizontal) the sum of the numbers equals $2022$ or $2023$?
I Soros Olympiad 1994-95 (Rus + Ukr), 11.10
Given a tetrahedron $A_1A_2A_3A_4$ (not necessarily regulart). We shall call a point $N$ in space [i]Serve point[/i], if it's six projection points on the six edges of the tetrahedron lie on one plane. This plane we denote it by $a (N)$ and call the [i]Serve plane[/i] of the point $N$. By $B_{ij}$ denote, respectively, the midpoint of the edges $A_1A_j$, $1\le i <j \le 4$. For each point $M$, denote by $M_{ij}$ the points symmetric to $M$ with respect to $B_{ij},$ $1\le i <j \le 4$. Prove that if all points $M_{ij}$ are Serve points, then the point $M$ belongs to all Serve planes $a (M_{ij})$, $1\le i <j \le 4$.
1989 AMC 8, 24
Suppose a square piece of paper is folded in half vertically. The folded paper is then cut in half along the dashed line. Three rectangles are formed-a large one and two small ones. What is the ratio of the perimeter of one of the small rectangles to the perimeter of the large rectangle?
$\text{(A)}\ \frac{1}{2} \qquad \text{(B)}\ \frac{2}{3} \qquad \text{(C)}\ \frac{3}{4} \qquad \text{(D)}\ \frac{4}{5} \qquad \text{(E)}\ \frac{5}{6}$
[asy]
draw((0,0)--(0,8)--(6,8)--(6,0)--cycle);
draw((0,8)--(5,9)--(5,8));
draw((3,-1.5)--(3,10.3),dashed);
draw((0,5.5)..(-.75,4.75)..(0,4));
draw((0,4)--(1.5,4),EndArrow);
[/asy]
2019 Azerbaijan Senior NMO, 4
Is it possible to construct a equilateral triangle such that:
$\text{a)}$ Coordinates of this triangle are integers in two dimensional plane?
$\text{b)}$ Coordinates of this triangle are integers in three dimensional plane?
2018 German National Olympiad, 6
Let $P$ be a point in the interior of a triangle $ABC$ and let the rays $\overrightarrow{AP}, \overrightarrow{BP}$ and $\overrightarrow{CP}$ intersect the sides $BC, CA$ and $AB$ in $A_1,B_1$ and $C_1$, respectively. Let $D$ be the foot of the perpendicular from $A_1$ to $B_1C_1$. Show that
\[\frac{CD}{BD}=\frac{B_1C}{BC_1} \cdot \frac{C_1A}{AB_1}.\]
2022 JBMO Shortlist, N2
Let $a < b < c < d < e$ be positive integers. Prove that
$$\frac{1}{[a, b]} + \frac{1}{[b, c]} + \frac{1}{[c, d]} + \frac{2}{[d, e]} \le 1$$
where $[x, y]$ is the least common multiple of $x$ and $y$ (e.g., $[6, 10] = 30$). When does equality hold?
MIPT Undergraduate Contest 2019, 1.1 & 2.1
In $\mathbb{R}^3$, let there be a cube $Q$ and a sequence of other cubes, all of which are homothetic to $Q$ with coefficients of homothety that are each smaller than $1$. Prove that if this sequence of homothetic cubes completely fills $Q$, the sum of their coefficients of homothety is not less than $4$.
2017 South Africa National Olympiad, 6
Determine all pairs $(P, d)$ of a polynomial $P$ with integer coefficients and an integer $d$ such that the equation $P(x) - P(y) = d$ has infinitely many solutions in integers $x$ and $y$ with $x \neq y$.
2019 Saint Petersburg Mathematical Olympiad, 2
Every two of the $n$ cities of Ruritania are connected by a direct flight of one from two airlines. Promonopoly Committee wants at least $k$ flights performed by one company. To do this, he can at least every day to choose any three cities and change the ownership of the three flights connecting these cities each other (that is, to take each of these flights from a company that performs it, and pass the other). What is the largest $k$ committee knowingly will be able to achieve its goal in no time, no matter how the flights are distributed hour?
2010 Lithuania National Olympiad, 1
$a,b$ are real numbers such that:
\[ a^3+b^3=8-6ab. \]
Find the maximal and minimal value of $a+b$.
MMPC Part II 1996 - 2019, 2004
[b]p1.[/b] The following figure represents a rectangular piece of paper $ABCD$ whose dimensions are $4$ inches by $3$ inches. When the paper is folded along the line segment $EF$, the corners $A$ and $C$ coincide.
(a) Find the length of segment $EF$.
(b) Extend $AD$ and $EF$ so they meet at $G$. Find the area of the triangle $\vartriangle AEG$.
[img]https://cdn.artofproblemsolving.com/attachments/d/4/e8844fd37b3b8163f62fcda1300c8d63221f51.png[/img]
[b]p2.[/b] (a) Let $p$ be a prime number. If $a, b, c$, and $d$ are distinct integers such that the equation $(x -a)(x - b)(x - c)(x - d) - p^2 = 0$ has an integer solution $r$, show that $(r - a) + (r - b) + (r - c) + (r - d) = 0$.
(b) Show that $r$ must be a double root of the equation $(x - a)(x - b)(x - c)(x - d) - p^2 = 0$.
[b]p3.[/b] If $\sin x + \sin y + \sin z = 0$ and $\cos x + \cos y + \cos z = 0$, prove the following statements.
(a) $\cos (x - y) = -\frac12$
(b) $\cos (\theta - x) + \cos(\theta - y) + \cos (\theta - z) = 0$, for any angle $\theta$.
(c) $\sin^2 x + \sin^2 y + \sin^2 z =\frac32$
[b]p4.[/b] Let $|A|$ denote the number of elements in the set $A$.
(a) Construct an infinite collection $\{A_i\}$ of infinite subsets of the set of natural numbers such that $|A_i \cap A_j | = 0$ for $i \ne j$.
(b) Construct an infinite collection $\{B_i\}$ of infinite subsets of the set of natural numbers such that $|B_i \cap B_j |$ gives a distinct integer for every pair of $i$ and $j$, $i \ne j$.
[b]p5.[/b] Consider the equation $x^4 + y^4 = z^5$.
(a) Show that the equation has a solution where $x, y$, and $z$ are positive integers.
(b) Show that the equation has infinitely many solutions where $x, y$, and $z$ are positive integers.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 USA TSTST, 9
Let $n$ be a positive integer. Suppose we are given $2^n+1$ distinct sets, each containing finitely many objects. Place each set into one of two categories, the red sets and the blue sets, so that there is at least one set in each category. We define the [i]symmetric difference[/i] of two sets as the set of objects belonging to exactly one of the two sets. Prove that there are at least $2^n$ different sets which can be obtained as the symmetric difference of a red set and a blue set.
2024 Azerbaijan IMO TST, 3
Let $\mathbb R_{>0}$ be the set of positive real numbers. Determine all functions $f \colon \mathbb R_{>0} \to \mathbb R_{>0}$ such that \[x \big(f(x) + f(y)\big) \geqslant \big(f(f(x)) + y\big) f(y)\] for every $x, y \in \mathbb R_{>0}$.
2013 Taiwan TST Round 1, 5
An integer $a$ is called friendly if the equation $(m^2+n)(n^2+m)=a(m-n)^3$ has a solution over the positive integers.
[b]a)[/b] Prove that there are at least $500$ friendly integers in the set $\{ 1,2,\ldots ,2012\}$.
[b]b)[/b] Decide whether $a=2$ is friendly.
2007 AMC 8, 14
The base of isosceles $\triangle{ABC}$ is $24$ and its area is $60$. What is the length of one of the congruent sides?
$\textbf{(A)}\ 5 \qquad
\textbf{(B)}\ 8 \qquad
\textbf{(C)}\ 13 \qquad
\textbf{(D)}\ 14 \qquad
\textbf{(E)}\ 18$
2023 Thailand TSTST, 3
Let $n>3$ be an integer. If $x_1<x_2<\ldots<x_{n+2}$ are reals with $x_1=0$, $x_2=1$ and $x_3>2$, what is the maximal value of $$(\frac{x_{n+1}+x_{n+2}-1}{x_{n+1}(x_{n+2}-1)})\cdot (\sum_{i=1}^{n}\frac{(x_{i+2}-x_{i+1})(x_{i+1}-x_i)}{x_{i+2}-x_i})?$$
V Soros Olympiad 1998 - 99 (Russia), grade8
[b]p1.[/b] Two proper ordinary fractions are given. The first has a numerator that is $5$ less than the denominator, and the second has a numerator that is $1998$ less than the denominator. Can their sum have a numerator greater than its denominator?
[b]p2.[/b] On New Year's Eve, geraniums, crocuses and cacti stood in a row (from left to right) on the windowsill. Every morning, Masha, wiping off the dust, swaps the places of the flower on the right and the flower in the center. During the day, Tanya, while watering flowers, swaps places between the one in the center and the one on the left. In what order will the flowers be in $365$ days on the next New Year's Eve?
[b]p3.[/b] The number $x$ is such that $15\%$ of it and $33\%$ of it are positive integers. What is the smallest number $x$ (not necessarily an integer!) with this property?
[b]p4.[/b] In the quadrilateral $ABCD$, the extensions of opposite sides $AB$ and $CD$ intersect at an angle of $20^o$; the extensions of opposite sides $BC$ and $AD$ also intersect at an angle of $20^o$. Prove that two angles in this quadrilateral are equal and the other two differ by $40^o$.
[b]p5.[/b] Given two positive integers $a$ and $b$. Prove that $a^ab^b\ge a^ab^a.$
[b]p6.[/b] The square is divided by straight lines into $25$ rectangles (fig.). The areas of some of They are indicated in the figure (not to scale). Find the area of the rectangle marked with a question mark.
[img]https://cdn.artofproblemsolving.com/attachments/0/9/591c93421067123d50382744f9d28357acf83a.png[/img]
[b]p7.[/b] A radio-controlled toy leaves a certain point. It moves in a straight line, and on command can turn left exactly $ 17^o$ (relative to the previous direction of movement). What is the smallest number of commands required for the toy to pass through the starting point again?
[b]p8.[/b] In expression $$(a-b+c)(d+e+f)(g-h-k)(\ell +m- n)(p + q)$$ opened the brackets. How many members will there be? How many of them will be preceded by a minus sign?
[b]p9.[/b] In some countries they decided to hold popular elections of the government. Two-thirds of voters in this country are urban and one-third are rural. The President must propose for approval a draft government of $100$ people. It is known that the same percentage of urban (rural) residents will vote for the project as there are people from the city (rural) in the proposed project. What is the smallest number of city residents that must be included in the draft government so that more than half of the voters vote for it?
[b]p10.[/b] Vasya and Petya play such a game on a $10 \times 10 board$. Vasya has many squares the size of one cell, Petya has many corners of three cells (fig.). They are walking one by one - first Vasya puts his square on the board, then Petya puts his corner, then Vasya puts another square, etc. (You cannot place pieces on top of others.) The one who cannot make the next move loses. Vasya claims that he can always win, no matter how hard Petya tries. Is Vasya right?
[img]https://cdn.artofproblemsolving.com/attachments/f/1/3ddec7826ff6eb92471855322e3b9f01357116.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
2000 Harvard-MIT Mathematics Tournament, 20
What is the minimum possible perimeter of a triangle two of whose sides are along the x- and y-axes and such that the third contains the point $(1,2)$?
2016 IMO, 4
A set of positive integers is called [i]fragrant[/i] if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^2+n+1$. What is the least possible positive integer value of $b$ such that there exists a non-negative integer $a$ for which the set $$\{P(a+1),P(a+2),\ldots,P(a+b)\}$$ is fragrant?
1973 IMO, 1
Prove that the sum of an odd number of vectors of length 1, of common origin $O$ and all situated in the same semi-plane determined by a straight line which goes through $O,$ is at least 1.
2014 Taiwan TST Round 3, 2
Let $m \neq 0 $ be an integer. Find all polynomials $P(x) $ with real coefficients such that
\[ (x^3 - mx^2 +1 ) P(x+1) + (x^3+mx^2+1) P(x-1) =2(x^3 - mx +1 ) P(x) \]
for all real number $x$.
1975 Swedish Mathematical Competition, 2
Is there a positive integer $n$ such that the fractional part of
\[
\left(3+\sqrt{5}\right)^n >0.99 ?
\]