This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1957 AMC 12/AHSME, 33

Tags:
If $ 9^{x \plus{} 2} \equal{} 240 \plus{} 9^x$, then the value of $ x$ is: $ \textbf{(A)}\ 0.1 \qquad \textbf{(B)}\ 0.2\qquad \textbf{(C)}\ 0.3\qquad \textbf{(D)}\ 0.4\qquad \textbf{(E)}\ 0.5$

2009 Bundeswettbewerb Mathematik, 2

Let $n$ be an integer that is greater than $1$. Prove that the following two statements are equivalent: (A) There are positive integers $a, b$ and $c$ that are not greater than $n$ and for which that polynomial $ax^2 + bx + c$ has two different real roots $x_1$ and $x_2$ with $| x_2- x_1 | \le \frac{1}{n}$ (B) The number $n$ has at least two different prime divisors.

2016 Hanoi Open Mathematics Competitions, 1

How many are there $10$-digit numbers composed from the digits $1, 2, 3$ only and in which, two neighbouring digits differ by $1$ : (A): $48$ (B): $64$ (C): $72$ (D): $128$ (E): None of the above.

1991 Baltic Way, 17

Let the coordinate planes have the reflection property. A ray falls onto one of them. How does the final direction of the ray after reflecting from all three coordinate planes depend on its initial direction?

2018 Israel National Olympiad, 1

$n$ people sit in a circle. Each of them is either a liar (always lies) or a truthteller (always tells the truth). Every person knows exactly who speaks the truth and who lies. In their turn, each person says 'the person two seats to my left is a truthteller'. It is known that there's at least one liar and at least one truthteller in the circle. [list=a] [*] Is it possible that $n=2017?$ [*] Is it possible that $n=5778?$ [/list]

1992 Romania Team Selection Test, 1

Suppose that$ f : N \to N$ is an increasing function such that $f(f(n)) = 3n$ for all $n$. Find $f(1992)$.

2010 Princeton University Math Competition, 3

Tags: geometry
As in the following diagram, square $ABCD$ and square $CEFG$ are placed side by side (i.e. $C$ is between $B$ and $E$ and $G$ is between $C$ and $D$). If $CE = 14$, $AB > 14$, compute the minimal area of $\triangle AEG$. [asy] size(120); defaultpen(linewidth(0.7)+fontsize(10)); pair D2(real x, real y) { pair P = (x,y); dot(P,linewidth(3)); return P; } int big = 30, small = 14; filldraw((0,big)--(big+small,0)--(big,small)--cycle, rgb(0.9,0.5,0.5)); draw(scale(big)*unitsquare); draw(shift(big,0)*scale(small)*unitsquare); label("$A$",D2(0,big),NW); label("$B$",D2(0,0),SW); label("$C$",D2(big,0),SW); label("$D$",D2(big,big),N); label("$E$",D2(big+small,0),SE); label("$F$",D2(big+small,small),NE); label("$G$",D2(big,small),NE); [/asy]

2010 Greece Junior Math Olympiad, 1

Determine the number of all positive integers which cannot be written in the form $80k + 3m$, where $k,m \in N = \{0,1,2,...,\}$

2021 MIG, 10

Tags:
If $k$ raisins are distributed evenly to eleven children, four raisins would be left over. How many raisins would be left over if $3k$ raisins were distributed instead? $\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad\textbf{(E) }7$

1983 Miklós Schweitzer, 12

Let $ X_1,X_2,\ldots, X_n$ be independent, identically distributed, nonnegative random variables with a common continuous distribution function $ F$. Suppose in addition that the inverse of $ F$, the quantile function $ Q$, is also continuous and $ Q(0)=0$. Let $ 0=X_{0: n} \leq X_{1: n} \leq \ldots \leq X_{n: n}$ be the ordered sample from the above random variables. Prove that if $ EX_1$ is finite, then the random variable \[ \Delta = \sup_{0\leq y \leq 1} \left| \frac 1n \sum_{i=1}^{\lfloor ny \rfloor +1} (n+1-i)(X_{i: n}-X_{i-1: n})- \int_0^y (1-u)dQ(u) \right|\] tends to zero with probability one as $ n \rightarrow \infty$. [i]S. Csorgp, L. Horvath[/i]

2024 AMC 10, 9

Tags: counting
In how many ways can $6$ juniors and $6$ seniors form $3$ disjoint teams of $4$ people so that each team has $2$ juniors and $2$ seniors? $ \textbf{(A) }720 \qquad \textbf{(B) }1350 \qquad \textbf{(C) }2700 \qquad \textbf{(D) }3280 \qquad \textbf{(E) }8100 \qquad $

1964 Dutch Mathematical Olympiad, 1

Given a triangle $ABC$, $\angle C= 60^o$. Construct a point $P$ on the side $AC$ and a point $Q$ on side $BC$ such that $ABQP$ is a trapezoid whose diagonals make an angle of $60^o$ with each other.

1969 IMO Longlists, 70

$(YUG 2)$ A park has the shape of a convex pentagon of area $50000\sqrt{3} m^2$. A man standing at an interior point $O$ of the park notices that he stands at a distance of at most $200 m$ from each vertex of the pentagon. Prove that he stands at a distance of at least $100 m$ from each side of the pentagon.

2022 IFYM, Sozopol, 8

Let $p$ and $q$ be mutually prime natural numbers greater than $1$. Starting with the permutation $(1, 2, . . . , n)$, in one move we can switch the places of two numbers if their difference is $p$ or $q$. Prove that with such moves we can get any another permutation if and only if $n \ge p + q - 1$.

2017 Bosnia And Herzegovina - Regional Olympiad, 2

Prove that numbers $1,2,...,16$ can be divided in sequence such that sum of any two neighboring numbers is perfect square

1980 USAMO, 2

Tags: algebra , induction
Determine the maximum number of three-term arithmetic progressions which can be chosen from a sequence of $n$ real numbers \[a_1<a_2<\cdots<a_n.\]

2010 Contests, 1

For a finite non empty set of primes $P$, let $m(P)$ denote the largest possible number of consecutive positive integers, each of which is divisible by at least one member of $P$. (i) Show that $|P|\le m(P)$, with equality if and only if $\min(P)>|P|$. (ii) Show that $m(P)<(|P|+1)(2^{|P|}-1)$. (The number $|P|$ is the size of set $P$) [i]Dan Schwarz, Romania[/i]

2009 Middle European Mathematical Olympiad, 6

Let $ a$, $ b$, $ c$ be real numbers such that for every two of the equations \[ x^2\plus{}ax\plus{}b\equal{}0, \quad x^2\plus{}bx\plus{}c\equal{}0, \quad x^2\plus{}cx\plus{}a\equal{}0\] there is exactly one real number satisfying both of them. Determine all possible values of $ a^2\plus{}b^2\plus{}c^2$.

1999 Bosnia and Herzegovina Team Selection Test, 2

Prove the inequality $$\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c} \geq 3\sqrt{3}R$$ in triangle $ABC$ where $a$, $b$ and $c$ are sides of triangle and $R$ radius of circumcircle of $ABC$

1997 Iran MO (2nd round), 2

Let segments $KN,KL$ be tangent to circle $C$ at points $N,L$, respectively. $M$ is a point on the extension of the segment $KN$ and $P$ is the other meet point of the circle $C$ and the circumcircle of $\triangle KLM$. $Q$ is on $ML$ such that $NQ$ is perpendicular to $ML$. Prove that \[ \angle MPQ=2\angle KML. \]

2012 Tuymaada Olympiad, 4

$25$ little donkeys stand in a row; the rightmost of them is Eeyore. Winnie-the-Pooh wants to give a balloon of one of the seven colours of the rainbow to each donkey, so that successive donkeys receive balloons of different colours, and so that at least one balloon of each colour is given to some donkey. Eeyore wants to give to each of the $24$ remaining donkeys a pot of one of six colours of the rainbow (except red), so that at least one pot of each colour is given to some donkey (but successive donkeys can receive pots of the same colour). Which of the two friends has more ways to get his plan implemented, and how many times more? [i]Eeyore is a character in the Winnie-the-Pooh books by A. A. Milne. He is generally depicted as a pessimistic, gloomy, depressed, old grey stuffed donkey, who is a friend of the title character, Winnie-the-Pooh. His name is an onomatopoeic representation of the braying sound made by a normal donkey. Of course, Winnie-the-Pooh is a fictional anthropomorphic bear.[/i] [i]Proposed by F. Petrov[/i]

2011 Portugal MO, 6

The number $1000$ can be written as the sum of $16$ consecutive natural numbers: $$1000 = 55 + 56 + ... + 70.$$ Determines all natural numbers that cannot be written as the sum of two or more consecutive natural numbers .

Durer Math Competition CD Finals - geometry, 2015.D4

The projection of the vertex $C$ of the rectangle $ABCD$ on the diagonal $BD$ is $E$. The projections of $E$ on $AB$ and $AD$ are $F$ and $G$ respectively. Prove that $$AF^{2/3} + AG^{2/3} = AC^{2/3}$$ .

2018-2019 Winter SDPC, 6

Let $S$ be the set of positive perfect squares that are of the form $\overline{AA}$, i.e. the concatenation of two equal integers $A$. (Integers are not allowed to start with zero.) (a) Prove that $S$ is infinite. (b) Does there exist a function $f:S\times S \rightarrow S$ such that if $a,b,c \in S$ and $a,b | c$, then $f(a,b) | c$? (If such a function $f$ exists, we call $f$ an LCM function)

2009 AMC 10, 7

Tags:
By inserting parentheses, it is possible to give the expression \[ 2\times3\plus{}4\times5 \]several values. How many different values can be obtained? $ \textbf{(A)}\ 2\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 4\qquad \textbf{(D)}\ 5\qquad \textbf{(E)}\ 6$