This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1982 IMO Longlists, 42

Let $\mathfrak F$ be the family of all $k$-element subsets of the set $\{1, 2, \ldots, 2k + 1\}$. Prove that there exists a bijective function $f :\mathfrak F \to \mathfrak F$ such that for every $A \in \mathfrak F$, the sets $A$ and $f(A)$ are disjoint.

2020 Polish Junior MO Second Round, 3.

There is the tournament for boys and girls. Every person played exactly one match with every other person, there were no draws. It turned out that every person had lost at least one game. Furthermore every boy lost different number of matches that every other boy. Prove that there is a girl, who won a match with at least one boy.

2013 Tournament of Towns, 3

Assume that $C$ is a right angle of triangle $ABC$ and $N$ is a midpoint of the semicircle, constructed on $CB$ as on diameter externally. Prove that $AN$ divides the bisector of angle $C$ in half.

2023 LMT Fall, 1C

Tags: theme , geo
How many distinct triangles are there with prime side lengths and perimeter $100$? [i]Proposed by Muztaba Syed[/i] [hide=Solution][i]Solution.[/i] $\boxed{0}$ As the perimeter is even, $1$ of the sides must be $2$. Thus, the other $2$ sides are congruent by Triangle Inequality. Thus, for the perimeter to be $100$, both of the other sides must be $49$, but as $49$ is obviously composite, the answer is thus $\boxed{0}$.[/hide]

2013 Nordic, 1

Let ${(a_n)_{n\ge1}} $ be a sequence with ${a_1 = 1} $ and ${a_{n+1} = \lfloor a_n +\sqrt{a_n}+\frac{1}{2}\rfloor }$ for all ${n \ge 1}$, where ${\lfloor x \rfloor}$ denotes the greatest integer less than or equal to ${x}$. Find all ${n \le 2013}$ such that ${a_n}$ is a perfect square

2015 IFYM, Sozopol, 6

In $\Delta ABC$ points $A_1$, $B_1$, and $C_1$ are the tangential points of the excircles of $ABC$ with its sides. a) Prove that $AA_1$, $BB_1$, and $CC_1$ intersect in one point $N$. b) If $AC+BC=3AB$, prove that the center of the inscribed circle of $ABC$, its tangential point with $AB$, and the point $N$ are collinear.

2007 Princeton University Math Competition, 8

$f(x) = x^3+3x^2 - 1$. Find the number of real solutions of $f(f(x)) = 0$.

2018 Morocco TST., 6

Determine all integers $ n\geq 2$ having the following property: for any integers $a_1,a_2,\ldots, a_n$ whose sum is not divisible by $n$, there exists an index $1 \leq i \leq n$ such that none of the numbers $$a_i,a_i+a_{i+1},\ldots,a_i+a_{i+1}+\ldots+a_{i+n-1}$$ is divisible by $n$. Here, we let $a_i=a_{i-n}$ when $i >n$. [i]Proposed by Warut Suksompong, Thailand[/i]

2005 Hungary-Israel Binational, 3

Find all sequences $x_{1},x_{2},...,x_{n}$ of distinct positive integers such that $\frac{1}{2}=\sum_{i=1}^{n}\frac{1}{x_{i}^{2}}$.

1986 AMC 12/AHSME, 16

Tags:
In $\triangle ABC$, $AB = 8$, $BC = 7$, $CA = 6$ and side $BC$ is extended, as shown in the figure, to a point $P$ so that $\triangle PAB$ is similar to $\triangle PCA$. The length of $PC$ is [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, P=(1.5,5), B=(8,0), C=P+2.5*dir(P--B); draw(A--P--C--A--B--C); label("$A$", A, W); label("$B$", B, E); label("$C$", C, NE); label("$P$", P, NW); label("$6$", 3*dir(A--C), SE); label("$7$", B+3*dir(B--C), NE); label("$8$", (4,0), S);[/asy] $ \textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11$

1967 IMO Longlists, 1

Prove that all numbers of the sequence \[ \frac{107811}{3}, \quad \frac{110778111}{3}, \frac{111077781111}{3}, \quad \ldots \] are exact cubes.

2003 China Team Selection Test, 1

Let $g(x)= \sum_{k=1}^{n} a_k \cos{kx}$, $a_1,a_2, \cdots, a_n, x \in R$. If $g(x) \geq -1$ holds for every $x \in R$, prove that $\sum_{k=1}^{n}a_k \leq n$.

2017 Purple Comet Problems, 27

Tags: algebra , min
Find the minimum value of $4(x^2 + y^2 + z^2 + w^2) + (xy - 7)^2 + (yz - 7)^2 + (zw - 7)^2 + (wx - 7)^2$ as $x, y, z$, and $w$ range over all real numbers.

2014 PUMaC Number Theory A, 2

Tags:
What is the last digit of ${17^{17^{17^{17}}}}$?

2006 Stanford Mathematics Tournament, 3

Tags:
A Gaussian prime is a Gaussian integer $ z\equal{}a\plus{}bi$ (where $ a$ and $ b$ are integers) with no Gaussian integer factors of smaller absolute value. Factor $ \minus{}4\plus{}7i$ into Gaussian primes with positive real parts. $ i$ is a symbol with the property that $ i^2\equal{}\minus{}1$.

2014 Indonesia MO Shortlist, C2

Show that the smallest number of colors that is needed for coloring numbers $1, 2,..., 2013$ so that for every two number $a, b$ which is the same color, $ab$ is not a multiple of $2014$, is $3$ colors.

2009 China Girls Math Olympiad, 5

Let $ x,y,z$ be real numbers greater than or equal to $ 1.$ Prove that \[ \prod(x^{2} \minus{} 2x \plus{} 2)\le (xyz)^{2} \minus{} 2xyz \plus{} 2.\]

2009 National Chemistry Olympiad, 43

Tags:
Which properties of electromagnetic radiation are inversely related? $ \textbf{(A)}\ \text{amplitude and frequency} \qquad$ $\textbf{(B)}\ \text{energy and wavelength} \qquad$ $\textbf{(C)}\ \text{energy and frequency} \qquad$ $\textbf{(D)}\ \text{wavelength and amplitude}\qquad$

1977 Poland - Second Round, 4

A pyramid with a quadrangular base is given such that each pair of circles inscribed in adjacent faces has a common point. Prove that the touchpoints of these circles with the base of the pyramid lie on one circle.

1989 Greece National Olympiad, 2

Tags: geometry , locus
Let $M$ be a point on side $BC$ of isosceles $ABC$ ($AB=AC$) and let $N$ be a points on the extension of $BC$ such that $(AM)^2+(AN)^2=2(AB)^2$. Find the locus of point $N$ when point $M$ moves on side $BC$.

2020 MOAA, Sets 6-9

[u]Set 6[/u] [b]B16.[/b] Let $\ell_r$ denote the line $x + ry + r^2 = 420$. Jeffrey draws the lines $\ell_a$ and $\ell_b$ and calculates their single intersection point. [b]B17.[/b] Let set $L$ consist of lines of the form $3x + 2ay = 60a + 48$ across all real constants a. For every line $\ell$ in $L$, the point on $\ell$ closest to the origin is in set $T$ . The area enclosed by the locus of all the points in $T$ can be expressed in the form nπ for some positive integer $n$. Compute $n$. [b]B18.[/b] What is remainder when the $2020$-digit number $202020 ... 20$ is divided by $275$? [u]Set 7[/u] [b]B19.[/b] Consider right triangle $\vartriangle ABC$ where $\angle ABC = 90^o$, $\angle ACB = 30^o$, and $AC = 10$. Suppose a beam of light is shot out from point $A$. It bounces off side $BC$ and then bounces off side $AC$, and then hits point $B$ and stops moving. If the beam of light travelled a distance of $d$, then compute $d^2$. [b]B20.[/b] Let $S$ be the set of all three digit numbers whose digits sum to $12$. What is the sum of all the elements in $S$? [b]B21.[/b] Consider all ordered pairs $(m, n)$ where $m$ is a positive integer and $n$ is an integer that satisfy $$m! = 3n^2 + 6n + 15,$$ where $m! = m \times (m - 1) \times ... \times 1$. Determine the product of all possible values of $n$. [u]Set 8[/u] [b]B22.[/b] Compute the number of ordered pairs of integers $(m, n)$ satisfying $1000 > m > n > 0$ and $6 \cdot lcm(m - n, m + n) = 5 \cdot lcm(m, n)$. [b]B23.[/b] Andrew is flipping a coin ten times. After every flip, he records the result (heads or tails). He notices that after every flip, the number of heads he had flipped was always at least the number of tails he had flipped. In how many ways could Andrew have flipped the coin? [b]B24.[/b] Consider a triangle $ABC$ with $AB = 7$, $BC = 8$, and $CA = 9$. Let $D$ lie on $\overline{AB}$ and $E$ lie on $\overline{AC}$ such that $BCED$ is a cyclic quadrilateral and $D, O, E$ are collinear, where $O$ is the circumcenter of $ABC$. The area of $\vartriangle ADE$ can be expressed as $\frac{m\sqrt{n}}{p}$, where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. What is $m + n + p$? [u]Set 9[/u] [i]This set consists of three estimation problems, with scoring schemes described.[/i] [b]B25.[/b] Submit one of the following ten numbers: $$3 \,\,\,\, 6\,\,\,\, 9\,\,\,\, 12\,\,\,\, 15\,\,\,\, 18\,\,\,\, 21\,\,\,\, 24\,\,\,\, 27\,\,\,\, 30.$$ The number of points you will receive for this question is equal to the number you selected divided by the total number of teams that selected that number, then rounded up to the nearest integer. For example, if you and four other teams select the number $27$, you would receive $\left\lceil \frac{27}{5}\right\rceil = 6$ points. [b]B26.[/b] Submit any integer from $1$ to $1,000,000$, inclusive. The standard deviation $\sigma$ of all responses $x_i$ to this question is computed by first taking the arithmetic mean $\mu$ of all responses, then taking the square root of average of $(x_i -\mu)^2$ over all $i$. More, precisely, if there are $N$ responses, then $$\sigma =\sqrt{\frac{1}{N} \sum^N_{i=1} (x_i -\mu)^2}.$$ For this problem, your goal is to estimate the standard deviation of all responses. An estimate of $e$ gives $\max \{ \left\lfloor 130 ( min \{ \frac{\sigma }{e},\frac{e}{\sigma }\}^{3}\right\rfloor -100,0 \}$ points. [b]B27.[/b] For a positive integer $n$, let $f(n)$ denote the number of distinct nonzero exponents in the prime factorization of $n$. For example, $f(36) = f(2^2 \times 3^2) = 1$ and $f(72) = f(2^3 \times 3^2) = 2$. Estimate $N = f(2) + f(3) +.. + f(10000)$. An estimate of $e$ gives $\max \{30 - \lfloor 7 log_{10}(|N - e|)\rfloor , 0\}$ points. PS. You had better use hide for answers. First sets have been posted [url=https://artofproblemsolving.com/community/c4h2777391p24371239]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2009 Unirea, 4

Evaluate the limit: \[ \lim_{n \to \infty}{n \cdot \sin{1} \cdot \sin{2} \cdot \dots \cdot \sin{n}}.\] Proposed to "Unirea" Intercounty contest, grade 11, Romania

2005 Sharygin Geometry Olympiad, 24

A triangle is given, all the angles of which are smaller than $\phi$, where $\phi <2\pi / 3$. Prove that in space there is a point from which all sides of the triangle are visible at an angle $\phi$.

1968 IMO Shortlist, 5

Let $h_n$ be the apothem (distance from the center to one of the sides) of a regular $n$-gon ($n \geq 3$) inscribed in a circle of radius $r$. Prove the inequality \[(n + 1)h_n+1 - nh_n > r.\] Also prove that if $r$ on the right side is replaced with a greater number, the inequality will not remain true for all $n \geq 3.$

2019 Belarus Team Selection Test, 3.2

A point $T$ is chosen inside a triangle $ABC$. Let $A_1$, $B_1$, and $C_1$ be the reflections of $T$ in $BC$, $CA$, and $AB$, respectively. Let $\Omega$ be the circumcircle of the triangle $A_1B_1C_1$. The lines $A_1T$, $B_1T$, and $C_1T$ meet $\Omega$ again at $A_2$, $B_2$, and $C_2$, respectively. Prove that the lines $AA_2$, $BB_2$, and $CC_2$ are concurrent on $\Omega$. [i]Proposed by Mongolia[/i]