This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 China Team Selection Test, 4

Call a sequence of positive integers $\{a_n\}$ good if for any distinct positive integers $m,n$, one has $$\gcd(m,n) \mid a_m^2 + a_n^2 \text{ and } \gcd(a_m,a_n) \mid m^2 + n^2.$$ Call a positive integer $a$ to be $k$-good if there exists a good sequence such that $a_k = a$. Does there exists a $k$ such that there are exactly $2019$ $k$-good positive integers?

2025 Israel TST, P1

Tags: geometry
Let \( \triangle ABC \) be an isosceles triangle with \( AB = AC \). Let \( D \) be a point on \( AC \). Let \( L \) be a point inside the triangle such that \( \angle CLD = 90^\circ \) and \[ CL \cdot BD = BL \cdot CD. \] Prove that the circumcenter of triangle \( \triangle BDL \) lies on line \( AB \).

2006 Hong Kong TST., 5

Given finitely many points in a plane, it is known that the area of the triangle formed by any three points of the set is less than 1. Show that all points of the set lie inside or on boundary of a triangle with area less than 4.

VMEO III 2006, 11.1

Given a polynomial $P(x)=x^4+x^3+3x^2-6x+1$. Calculate $P(\alpha^2+\alpha+1)$ where \[ \alpha=\sqrt[3]{\frac{1+\sqrt{5}}{2}}+\sqrt[3]{\frac{1-\sqrt{5}}{2}} \]

2024 Bulgarian Autumn Math Competition, 9.2

Tags: geometry
Let $ABC$ be an acute scalene triangle with altitudes $AE$ $(E \in BC)$ and $BD$ $(D \in AC)$. Point $M$ lies on $AC$, such that $AM = AE$ and $C,A$ and $M$ lie in this order. Point $L$ lies on $BC$, such that $BL=BD$ and $C,B$ and $L$ lie in this order. Let $P$ be the midpoint of $DE$. Prove that $EM,DL$ and the perpendicular from $P$ to $AB$ are concurrent.

2009 Saint Petersburg Mathematical Olympiad, 4

From $2008 \times 2008$ square we remove one corner cell $1 \times 1$. Is number of ways to divide this figure to corners from $3$ cells odd or even ?

2022 CMWMC, R3

[u]Set 3[/u] [b]3.1[/b] Annie has $24$ letter tiles in a bag; $8$ C’s, $8$ M’s, and $8$ W’s. She blindly draws tiles from the bag until she has enough to spell “CMWMC.” What is the maximum number of tiles she may have to draw? [b]3.2[/b] Let $T$ be the answer from the previous problem. Charlotte is initially standing at $(0, 0)$ in the coordinate plane. She takes $T$ steps, each of which moves her by $1$ unit in either the $+x$, $-x$, $+y$, or $-y$ direction (e.g. her first step takes her to $(1, 0)$, $(1, 0)$, $(0, 1)$ or $(0, -1)$). After the T steps, how many possibilities are there for Charlotte’s location? [b]3.3[/b] Let $T$ be the answer from the previous problem, and let $S$ be the sum of the digits of $T$. Francesca has an unfair coin with an unknown probability $p$ of landing heads on a given flip. If she flips the coin $S$ times, the probability she gets exactly one head is equal to the probability she gets exactly two heads. Compute the probability $p$. PS. You should use hide for answers.

1962 IMO Shortlist, 1

Find the smallest natural number $n$ which has the following properties: a) Its decimal representation has a 6 as the last digit. b) If the last digit 6 is erased and placed in front of the remaining digits, the resulting number is four times as large as the original number $n$.

2012 AMC 10, 14

Two equilateral triangles are contained in a square whose side length is $2\sqrt3$. The bases of these triangles are the opposite sides of the square, and their intersection is a rhombus. What is the area of the rhombus? $ \textbf{(A)}\ \frac{3}{2}\qquad\textbf{(B)}\ \sqrt3\qquad\textbf{(C)}\ 2\sqrt2-1\qquad\textbf{(D)}\ 8\sqrt3-12\qquad\textbf{(E)}\ \frac{4\sqrt3}{3}$

1966 IMO Longlists, 17

Let $ABCD$ and $A^{\prime }B^{\prime}C^{\prime }D^{\prime }$ be two arbitrary parallelograms in the space, and let $M,$ $N,$ $P,$ $Q$ be points dividing the segments $AA^{\prime },$ $BB^{\prime },$ $CC^{\prime },$ $DD^{\prime }$ in equal ratios. [b]a.)[/b] Prove that the quadrilateral $MNPQ$ is a parallelogram. [b]b.)[/b] What is the locus of the center of the parallelogram $MNPQ,$ when the point $M$ moves on the segment $AA^{\prime }$ ? (Consecutive vertices of the parallelograms are labelled in alphabetical order.

2015 Germany Team Selection Test, 3

Let $ABC$ be an acute triangle with $|AB| \neq |AC|$ and the midpoints of segments $[AB]$ and $[AC]$ be $D$ resp. $E$. The circumcircles of the triangles $BCD$ and $BCE$ intersect the circumcircle of triangle $ADE$ in $P$ resp. $Q$ with $P \neq D$ and $Q \neq E$. Prove $|AP|=|AQ|$. [i](Notation: $|\cdot|$ denotes the length of a segment and $[\cdot]$ denotes the line segment.)[/i]

2003 China Western Mathematical Olympiad, 3

Tags: inequalities
The non-negative numbers $ x_1, x_2, \ldots, x_5$ satisfy $ \sum_{i \equal{} 1}^5 \frac {1}{1 \plus{} x_i} \equal{} 1$. Prove that $ \sum_{i \equal{} 1}^5 \frac {x_i}{4 \plus{} x_i^2} \leq 1$.

2019 Greece Team Selection Test, 1

Given an equilateral triangle with sidelength $k$ cm. With lines parallel to it's sides, we split it into $k^2$ small equilateral triangles with sidelength $1$ cm. This way, a triangular grid is created. In every small triangle of sidelength $1$ cm, we place exactly one integer from $1$ to $k^2$ (included), such that there are no such triangles having the same numbers. With vertices the points of the grid, regular hexagons are defined of sidelengths $1$ cm. We shall name as [i]value [/i] of the hexagon, the sum of the numbers that lie on the $6$ small equilateral triangles that the hexagon consists of . Find (in terms of the integer $k>4$) the maximum and the minimum value of the sum of the values of all hexagons .

1996 Greece Junior Math Olympiad, 2

Tags: midpoint , area , geometry
In a triangle $ABC$ let $D,E,Z,H,G$ be the midpoints of $BC,AD,BD,ED,EZ$ respectively. Let $I$ be the intersection of $BE,AC$ and let $K$ be the intersection of $HG,AC$. Prove that: a) $AK=3CK$ b) $HK=3HG$ c) $BE=3EI$ d) $(EGH)=\frac{1}{32}(ABC)$ Notation $(...)$ stands for area of $....$

1998 Abels Math Contest (Norwegian MO), 3

Let $n$ be a positive integer. (a) Prove that $1^5 +3^5 +5^5 +...+(2n-1)^5$ is divisible by $n$. (b) Prove that $1^3 +3^3 +5^3 +...+(2n-1)^3$ is divisible by $n^2$.

PEN K Problems, 18

Find all functions $f: \mathbb{Q}\to \mathbb{R}$ such that for all $x,y\in \mathbb{Q}$: \[f(xy)=f(x)f(y)-f(x+y)+1.\]

2024 Princeton University Math Competition, A5 / B7

Tags: geometry
Let $\triangle ABC$ be a triangle such that the angle bisector of $\triangle BAC,$ the median from $B$ to side $AC,$ and the perpendicular bisector of $AB$ intersect at a single point $X.$ If $AX = 5$ and $AC = 12,$ compute $a+b$ where $BC^2=\tfrac{a}{b}$ and $a,b$ are coprime positive integers. .

2010 Canadian Mathematical Olympiad Qualification Repechage, 1

Tags: logarithm
Suppose that $a$, $b$ and $x$ are positive real numbers. Prove that $\log_{ab} x =\dfrac{\log_a x\log_b x}{\log_ax+\log_bx}$.

2023 Indonesia Regional, 4

Find all irrational real numbers $\alpha$ such that \[ \alpha^3 - 15 \alpha \text{ and } \alpha^4 - 56 \alpha \] are both rational numbers.

2019 APMO, 4

Consider a $2018 \times 2019$ board with integers in each unit square. Two unit squares are said to be neighbours if they share a common edge. In each turn, you choose some unit squares. Then for each chosen unit square the average of all its neighbours is calculated. Finally, after these calculations are done, the number in each chosen unit square is replaced by the corresponding average. Is it always possible to make the numbers in all squares become the same after finitely many turns?

2015 HMNT, 10-18

10) Call a string of letters $S$ an [i]almost-palindrome[/i] if $S$ and the reverse of $S$ differ in exactly $2$ places. Find the number of ways to order the letters in $HMMTTHEMETEAM$ to get an almost-palindrome. 11) Find all integers $n$, not necessarily positive, for which there exist positive integers ${a,b,c}$ satisfying $a^n + b^n = c^n$. 12) Let $a$ and $b$ be positive real numbers. Determine the minimum possible value of $\sqrt{a^2 + b^2} + \sqrt{a^2 + (b-1)^2} + \sqrt{(a-1)^2 + b^2} + \sqrt{(a-1)^2 + (b-1)^2}$. 13) Consider a $4$ x $4$ grid of squares, each originally colored red. Every minute, Piet can jump on any of the squares, changing the color of it and any adjacent squares to blue (two squares are adjacent if they share a side). What is the minimum number of minutes it will take Piet to change the entire grid to blue? 14) Let $ABC$ be an acute triangle with orthocenter $H$. Let ${D,E}$ be the feet of the ${A,B}$-altitudes, respectively. Given that $\overline{AH} = 20$ and $\overline{HD} =16$ and $\overline{BE} = 56$, find the length of $\overline{BH}$. 15) Find the smallest positive integer $b$ such that $1111 _b$ ($1111$ in base $b$) is a perfect square. If no such $b$ exists, write "No Solution" 16) For how many triples $( {x,y,z} )$ of integers between $-10$ and $10$, inclusive, do there exist reals ${a,b,c}$ that satisfy $ab = x$ $ac = y$ $bc = z$? 17) Unit squares $ABCD$ and $EFGH$ have centers $O_1$ and $O_2$, respectively, and are originally oriented so that $B$ and $E$ are at the same position and $C$ and $H$ are at the same position. The squares then rotate clockwise around their centers at a rate of one revolution per hour. After $5$ minutes, what is the area of the intersection of the two squares? 18) A function $f$ satisfies, for all nonnegative integers $x$ and $y$, $f(x,0) = f(0,x) = x$ If $x \ge y \ge 0$, $f(x,y)=f(x-y,y)+1$ If $y \ge x \ge 0$, $f(x,y) = f(x,y-x)+1$ Find the maximum value of $f$ over $0 \le x,y \le 100$.

1979 IMO Shortlist, 11

Given real numbers $x_1, x_2, \dots , x_n \ (n \geq 2)$, with $x_i \geq \frac 1n \ (i = 1, 2, \dots, n)$ and with $x_1^2+x_2^2+\cdots+x_n^2 = 1$ , find whether the product $P = x_1x_2x_3 \cdots x_n$ has a greatest and/or least value and if so, give these values.

2020 Brazil Cono Sur TST, 4

A flea is, initially, in the point, which the coordinate is $1$, in the real line. At each second, from the coordinate $a$, the flea can jump to the coordinate point $a+2$ or to the coordinate point $\frac{a}{2}$. Determine the quantity of distinct positions(including the initial position) which the flea can be in until $n$ seconds. For instance, if $n=1$, the flea can be in the coordinate points $1,3$ or $\frac{1}{2}$.

2019 Math Prize for Girls Problems, 8

Tags:
How many positive integers less than 4000 are not divisible by 2, not divisible by 3, not divisible by 5, and not divisible by 7?

2019 Moldova EGMO TST, 2

Let $ABC$ be an acute triangle with $AB<AC$. Point $M{}$ from the side $(BC)$ is the foot of the bisector from the vertex $A{}$. The perpendicular bisector of the segment $[AM]$ intersects the side $(AC)$ in $E{}$, the side $(AB)$ in $D$ and the line $(BC)$ in $F{}$. Prove that $\frac{DB}{CE}=\frac{FB}{FC}=\left(\frac{AB}{AC}\right)^2$.