This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 Balkan MO, 1

Tags: geometry
A quadrilateral $ABCD$ is inscribed in a circle $k$ where $AB$ $>$ $CD$,and $AB$ is not paralel to $CD$.Point $M$ is the intersection of diagonals $AC$ and $BD$, and the perpendicular from $M$ to $AB$ intersects the segment $AB$ at a point $E$.If $EM$ bisects the angle $CED$ prove that $AB$ is diameter of $k$. Proposed by Emil Stoyanov,Bulgaria

2015 Estonia Team Selection Test, 4

Altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at $H$. Let $C_1 (H,HE)$ and $C_2(B,BE)$ be two circles tangent at $AC$ at point $E$. Let $P\ne E$ be the second point of tangency of the circle $C_1 (H,HE)$ with its tangent line going through point $C$, and $Q\ne E$ be the second point of tangency of the circle $C_2(B,BE)$ with its tangent line going through point $C$. Prove that points $D, P$, and $Q$ are collinear.

2005 Purple Comet Problems, 7

Tags:
The graph of the equation $y = 5x + 24$ intersects the graph of the equation $y = x^2$ at two points. The two points are a distance $\sqrt{N}$ apart. Find $N$.

2012 Serbia JBMO TST, 4

In a coordinate system there are drawn the graphs of the functions $y=ax+b$ and $y=bx+a, (a\neq b)$. Their intersection is marked with red and their intersections with the $Oy$ axis are marked with blue. Everything is erased except the marked points. Using only a ruler and a compass, find the origin of the coordinate system.

2016 Bosnia And Herzegovina - Regional Olympiad, 4

It is given circle with center in center of coordinate center with radius of $2016$. On circle and inside it are $540$ points with integer coordinates such that no three of them are collinear. Prove that there exist two triangles with vertices in given points such that they have same area

2015 CCA Math Bonanza, TB1

Tags:
Compute the greatest $4$-digit number $\underline{ABCD}$ such that $(A^3+B^2)(C^3+D^2)=2015$. [i]2015 CCA Math Bonanza Tiebreaker Round #1[/i]

2014 IMAC Arhimede, 3

a) Prove that the equation $2^x + 21^x = y^3$ has no solution in the set of natural numbers. b) Solve the equation $2^x + 21^y = z^2y$ in the set of non-negative integer numbers.

2016 Indonesia TST, 3

Let $\{E_1, E_2, \dots, E_m\}$ be a collection of sets such that $E_i \subseteq X = \{1, 2, \dots, 100\}$, $E_i \neq X$, $i = 1, 2, \dots, m$. It is known that every two elements of $X$ is contained together in exactly one $E_i$ for some $i$. Determine the minimum value of $m$.

2008 Irish Math Olympiad, 2

Tags: inequalities
For positive real numbers $ a$, $ b$, $ c$ and $ d$ such that $ a^2 \plus{} b^2 \plus{} c^2 \plus{} d^2 \equal{} 1$ prove that $ a^2b^2cd \plus{} \plus{}ab^2c^2d \plus{} abc^2d^2 \plus{} a^2bcd^2 \plus{} a^2bc^2d \plus{} ab^2cd^2 \le 3/32,$ and determine the cases of equality.

2021 Durer Math Competition Finals, 10

Billy owns some really energetic horses. They are hopping around on points of the plane having two integer coordinates. Each horse can make the following types of jumps. They can hop to a point obtained from their current position via a translation by vector $(15, 9)$, $(-9, 15)$, $(-15,-9)$ or $(9,-15)$. The horses are now standing on lattice points such that no two can meet by making jumps as above. What is the maximal possible number of horses Billy can own?

1994 IMO Shortlist, 4

Let $ \mathbb{R}$ denote the set of all real numbers and $ \mathbb{R}^\plus{}$ the subset of all positive ones. Let $ \alpha$ and $ \beta$ be given elements in $ \mathbb{R},$ not necessarily distinct. Find all functions $ f: \mathbb{R}^\plus{} \mapsto \mathbb{R}$ such that \[ f(x)f(y) \equal{} y^{\alpha} f \left( \frac{x}{2} \right) \plus{} x^{\beta} f \left( \frac{y}{2} \right) \forall x,y \in \mathbb{R}^\plus{}.\]

2012 South East Mathematical Olympiad, 3

For composite number $n$, let $f(n)$ denote the sum of the least three divisors of $n$, and $g(n)$ the sum of the greatest two divisors of $n$. Find all composite numbers $n$, such that $g(n)=(f(n))^m$ ($m\in N^*$).

2009 AIME Problems, 3

In rectangle $ ABCD$, $ AB\equal{}100$. Let $ E$ be the midpoint of $ \overline{AD}$. Given that line $ AC$ and line $ BE$ are perpendicular, find the greatest integer less than $ AD$.

2017 China Girls Math Olympiad, 6

Given a finite set $X$, two positive integers $n,k$, and a map $f:X\to X$. Define $f^{(1)}(x)=f(x),f^{(i+1)}(x)=f^{(i)}(x)$,$i=1,2,3,\ldots$. It is known that for any $x\in X$,$f^{(n)}(x)=x$. Define $m_j$ the number of $x\in X$ satisfying $f^{(j)}(x)=x$. Prove that: (1)$\frac{1}n \sum_{j=1}^n m_j\sin {\frac{2kj\pi}{n}}=0$ (2)$\frac{1}n \sum_{j=1}^n m_j\cos {\frac{2kj\pi}{n}}$ is a non-negative integer.

2019 AMC 8, 8

Gilda has a bag of marbles. She gives $20 \%$ of them to her friend Pedro. The, Gilda gives $10 \%$ of what is left to her other friend, Ebony. Finally, Gilda gives $25 \%$ of what is left in the bag to her brother. What percentage of her original bag does she have left? $\textbf{(A) } 20 \qquad\textbf{(B) } 33\tfrac{1}{3} \qquad\textbf{(C) } 38 \qquad\textbf{(D) } 45 \qquad\textbf{(E) } 54$

2009 Harvard-MIT Mathematics Tournament, 9

Let $ABC$ be a triangle with $AB=16$ and $AC=5$. Suppose that the bisectors of angle $\angle ABC$ and $\angle BCA$ meet at a point $P$ in the triangle's interior. Given that $AP=4$, compute $BC$.

JBMO Geometry Collection, 1997

Tags: inequalities
Let $ABC$ be a triangle and let $I$ be the incenter. Let $N$, $M$ be the midpoints of the sides $AB$ and $CA$ respectively. The lines $BI$ and $CI$ meet $MN$ at $K$ and $L$ respectively. Prove that $AI+BI+CI>BC+KL$. [i]Greece[/i]

2012 ELMO Shortlist, 6

Prove that if $a$ and $b$ are positive integers and $ab>1$, then \[\left\lfloor\frac{(a-b)^2-1}{ab}\right\rfloor=\left\lfloor\frac{(a-b)^2-1}{ab-1}\right\rfloor.\]Here $\lfloor x\rfloor$ denotes the greatest integer not exceeding $x$. [i]Calvin Deng.[/i]

2023 Korea - Final Round, 3

Let $p$ be an odd prime. Let $A(n)$ be the number of subsets of $\{1,2,...,n\}$ such that the sum of elements of the subset is a multiple of $p$. Prove that if $2^{p-1}-1$ is not a multiple of $p^2$, there exists infinitely many positive integer $m$ for any integer $k$ that satisfies the following. (The sum of elements of the empty set is 0.) $$\frac{A(m)-k}{p}\in\mathbb{Z}$$

2012 AMC 10, 20

A $3\times3$ square is partitioned into $9$ unit squares. Each unit square is painted either white or black with each color being equally likely, chosen independently and at random. The square is the rotated $90^\circ$ clockwise about its center, and every white square in a position formerly occupied by a black square is painted black. The colors of all other squares are left unchanged. What is the probability that the grid is now entirely black? $ \textbf{(A)}\ \dfrac{49}{512} \qquad\textbf{(B)}\ \dfrac{7}{64} \qquad\textbf{(C)}\ \dfrac{121}{1024} \qquad\textbf{(D)}\ \dfrac{81}{512} \qquad\textbf{(E)}\ \dfrac{9}{32} $

2007 All-Russian Olympiad, 5

Given a set of $n>2$ planar vectors. A vector from this set is called [i]long[/i], if its length is not less than the length of the sum of other vectors in this set. Prove that if each vector is long, then the sum of all vectors equals to zero. [i]N. Agakhanov[/i]

2016 Romanian Masters in Mathematic, 5

Tags: geometry , hexagon
A convex hexagon $A_1B_1A_2B_2A_3B_3$ it is inscribed in a circumference $\Omega$ with radius $R$. The diagonals $A_1B_2$, $A_2B_3$, $A_3B_1$ are concurrent in $X$. For each $i=1,2,3$ let $\omega_i$ tangent to the segments $XA_i$ and $XB_i$ and tangent to the arc $A_iB_i$ of $\Omega$ that does not contain the other vertices of the hexagon; let $r_i$ the radius of $\omega_i$. $(a)$ Prove that $R\geq r_1+r_2+r_3$ $(b)$ If $R= r_1+r_2+r_3$, prove that the six points of tangency of the circumferences $\omega_i$ with the diagonals $A_1B_2$, $A_2B_3$, $A_3B_1$ are concyclic

2002 Italy TST, 1

Given that in a triangle $ABC$, $AB=3$, $BC=4$ and the midpoints of the altitudes of the triangle are collinear, find all possible values of the length of $AC$.

2012 Singapore Senior Math Olympiad, 3

If $46$ squares are colored red in a $9\times 9$ board, show that there is a $2\times 2$ block on the board in which at least $3$ of the squares are colored red.

2001 China Team Selection Test, 1

Let $k$ be a given integer, $3 < k \leq n$. Consider a graph $G$ with $n$ vertices satisfying the condition: for any two non-adjacent vertices $x$ and $y$ in graph $G$, the sum of their degrees must satisfy $d(x) + d(y) \geq k$. Please answer the following questions and prove your conclusions. (1) Suppose the length of the longest path in graph $G$ is $l$ satisfying the inequality $3 \leq l < k$, does graph $G$ necessarily contain a cycle of length $l+1$? (The length of a path or cycle refers to the number of edges that make up the path or cycle.) (2) For the case where $3 < k \leq n-1$ and graph $G$ is connected, can we determine that the length of the longest path in graph $G$, $l \geq k$? (3) For the case where $3 < k = n-1$, is it necessary for graph $G$ to have a path of length $n-1$ (i.e., a Hamiltonian path)?