This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1972 Polish MO Finals, 2

On the plane are given $n > 2$ points, no three of which are collinear. Prove that among all closed polygonal lines passing through these points, any one with the minimum length is non-selfintersecting.

2015 NZMOC Camp Selection Problems, 2

A mathematics competition had $9$ easy and $6$ difficult problems. Each of the participants in the competition solved $14$ of the $15$ problems. For each pair, consisting of an easy and a difficult problem, the number of participants who solved both those problems was recorded. The sum of these recorded numbers was $459$. How many participants were there?

2018 AMC 10, 25

Tags:
Let $\lfloor x\rfloor$ denote the greatest integer less than or equal to $x$. How many real numbers $x$ satisfy the equation $x^2 + 10{,}000\lfloor x \rfloor = 10{,}000x$? $\textbf{(A) } 197 \qquad \textbf{(B) } 198 \qquad \textbf{(C) } 199 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 201$

2025 Euler Olympiad, Round 2, 1

Let a pair of positive integers $(n, m)$ that are relatively prime be called [i]intertwined[/i] if among any two divisors of $n$ greater than $1$, there exists a divisor of $m$ and among any two divisors of $m$ greater than $1$, there exists a divisor of $n$. For example, pair $(63, 64)$ is intertwined. [b]a)[/b] Find the largest integer $k$ for which there exists an intertwined pair $(n, m)$ such that the product $nm$ is equal to the product of the first $k$ prime numbers. [b]b)[/b] Prove that there does [b]not[/b] exist an intertwined pair $(n, m)$ such that the product $nm$ is the product of $2025$ distinct prime numbers. [b]c)[/b] Prove that there exists an intertwined pair $(n, m)$ such that the number of divisors of $n$ is greater than $2025$. [i]Proposed by Stijn Cambie, Belgium[/i]

2002 India IMO Training Camp, 9

On each day of their tour of the West Indies, Sourav and Srinath have either an apple or an orange for breakfast. Sourav has oranges for the first $m$ days, apples for the next $m$ days, followed by oranges for the next $m$ days, and so on. Srinath has oranges for the first $n$ days, apples for the next $n$ days, followed by oranges for the next $n$ days, and so on. If $\gcd(m,n)=1$, and if the tour lasted for $mn$ days, on how many days did they eat the same kind of fruit?

1967 Bulgaria National Olympiad, Problem 1

Tags: algebra
The numbers $12,14,37,65$ are one of the solutions of the equation $xy-xz+yt=182$. What number corresponds to which letter?

2002 Switzerland Team Selection Test, 3

Let $d_1,d_2,d_3,d_4$ be the four smallest divisors of a positive integer $n$ (having at least four divisors). Find all $n$ such that $d_1^2+d_2^2+d_3^2+d_4^2 = n$.

1996 Akdeniz University MO, 2

Let $u_1=1,u_2=1$ and for all $k \geq 1$'s $$u_{k+2}=u_{k+1}+u_{k}$$ Prove that for all $m \geq 1$'s $5$ divides $u_{5m}$

2016 Iran Team Selection Test, 6

In a company of people some pairs are enemies. A group of people is called [i]unsociable[/i] if the number of members in the group is odd and at least $3$, and it is possible to arrange all its members around a round table so that every two neighbors are enemies. Given that there are at most $2015$ unsociable groups, prove that it is possible to partition the company into $11$ parts so that no two enemies are in the same part. [i]Proposed by Russia[/i]

2010 Sharygin Geometry Olympiad, 22

A circle centered at a point $F$ and a parabola with focus $F$ have two common points. Prove that there exist four points $A, B, C, D$ on the circle such that the lines $AB, BC, CD$ and $DA$ touch the parabola.

2000 Moldova National Olympiad, Problem 5

Tags: logic
Several crocodiles, dragons and snakes were left on an island. Animals were eating each other according to the following rules. Every day at the breakfast, each snake ate one dragon; at the lunch, each dragon ate one crocodile; and at the dinner, each crocodile ate one snake. On the Saturday after the dinner, only one crocodile and no snakes and dragons remained on the island. How many crocodiles, dragons and snakes were there on the Monday in the same week before the breakfast?

2015 CCA Math Bonanza, L2.1

Tags:
What is the sum of the first $10$ primes? [i]2015 CCA Math Bonanza Lightning Round #2.1[/i]

2013 Today's Calculation Of Integral, 870

Consider the ellipse $E: 3x^2+y^2=3$ and the hyperbola $H: xy=\frac 34.$ (1) Find all points of intersection of $E$ and $H$. (2) Find the area of the region expressed by the system of inequality \[\left\{ \begin{array}{ll} 3x^2+y^2\leq 3 &\quad \\ xy\geq \frac 34 , &\quad \end{array} \right.\]

1989 Iran MO (2nd round), 1

[b](a)[/b] Let $n$ be a positive integer, prove that \[ \sqrt{n+1} - \sqrt{n} < \frac{1}{2 \sqrt n}\] [b](b)[/b] Find a positive integer $n$ for which \[ \bigg\lfloor 1 +\frac{1}{\sqrt 2} +\frac{1}{\sqrt 3} +\frac{1}{\sqrt 4} + \cdots +\frac{1}{\sqrt n} \bigg\rfloor =12\]

2009 Today's Calculation Of Integral, 478

Evaluate $ \int_0^{\frac{\pi}{4}} \{(x\sqrt{\sin x}\plus{}2\sqrt{\cos x})\sqrt{\tan x}\plus{}(x\sqrt{\cos x}\minus{}2\sqrt{\sin x})\sqrt{\cot x}\}\ dx.$

2013 Today's Calculation Of Integral, 879

Evaluate the integrals as follows. (1) $\int \frac{x^2}{2-x}\ dx$ (2) $\int \sqrt[3]{x^5+x^3}\ dx$ (3) $\int_0^1 (1-x)\cos \pi x\ dx$

2011 China Girls Math Olympiad, 1

Find all positive integers $n$ such that the equation $\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$ has exactly $2011$ positive integer solutions $(x,y)$ where $x \leq y$.

2015 MMATHS, 4

For any nonnegative integer $r$, let $S_r$ be a function whose domain is the natural numbers that satisfies $$S_r(p^{\alpha}) = \begin{cases} 0\,\, if \,\, if \,\, p \le r \\ p^{{\alpha}-1}(p -r) \,\, if \,\,p > r \end{cases}$$ for all primes $p$ and positive integers ${\alpha}$, and that $S_r(ab) = S_r(a)Sr_(b)$ whenever $a$ and $b$ are relatively prime. Now, suppose there are $n$ squirrels at a party. Each squirrel is labeled with a unique number from the set $\{1, 2,..., n\}$. Two squirrels are friends with each other if and only if the difference between their labels is relatively prime to $n$. For example, if $n = 10$, then the squirrels with labels $3$ and $10$ are friends with each other because $10 - 3 = 7$, and $7$ is relatively prime to $10$. Fix a positive integer $m$. Define a clique of size $m$ to be any set of m squirrels at the party with the property that any two squirrels in the clique are friends with each other. Determine, with proof, a formula (using $S_r$) for the number of cliques of size $m$ at the squirrel party.

2011 ELMO Shortlist, 4

Consider the infinite grid of lattice points in $\mathbb{Z}^3$. Little D and Big Z play a game, where Little D first loses a shoe on an unmunched point in the grid. Then, Big Z munches a shoe-free plane perpendicular to one of the coordinate axes. They continue to alternate turns in this fashion, with Little D's goal to lose a shoe on each of $n$ consecutive lattice points on a line parallel to one of the coordinate axes. Determine all $n$ for which Little D can accomplish his goal. [i]David Yang.[/i]

2020/2021 Tournament of Towns, P2

Maria has a balance scale that can indicate which of its pans is heavier or whether they have equal weight. She also has 4 weights that look the same but have masses of 1001, 1002, 1004 and 1005g. Can Maria determine the mass of each weight in 4 weightings? The weights for a new weighing may be picked when the result of the previous ones is known. [i]The Jury[/i] (For the senior paper) The same question when the left pan of the scale is lighter by 1g than the right one, so the scale indicates equality when the mass on the left pan is heavier by 1g than the mass on the right pan. [i]Alexey Tolpygo[/i]

2023 UMD Math Competition Part I, #8

How many positive integers less than $1$ million have exactly $5$ positive divisors? $$ \mathrm a. ~ 1\qquad \mathrm b.~5\qquad \mathrm c. ~11 \qquad \mathrm d. ~23 \qquad \mathrm e. ~24 $$

1997 Moscow Mathematical Olympiad, 5

Tags:
Let $1+x+x^2+...+x^{n-1}=F(x)G(x)$, where $n>1$ and where $F$ and $G$ are polynomials whose coefficients are zeroes and units. Prove that one of the polynomials $F$ and $G$ can be represented in the form $(1+x+x^2+...x^{k-1})T(x),$ where $k>1$ and $T$ is a polynomial whose coefficients are zeroes and units.

2009 Miklós Schweitzer, 4

Prove that the polynomial \[ f(x) \equal{} \frac {x^n \plus{} x^m \minus{} 2}{x^{\gcd(m,n)} \minus{} 1}\] is irreducible over $ \mathbb{Q}$ for all integers $ n > m > 0$.

2009 Middle European Mathematical Olympiad, 1

Find all functions $ f: \mathbb{R} \to \mathbb{R}$, such that \[ f(xf(y)) \plus{} f(f(x) \plus{} f(y)) \equal{} yf(x) \plus{} f(x \plus{} f(y))\] holds for all $ x$, $ y \in \mathbb{R}$, where $ \mathbb{R}$ denotes the set of real numbers.

2021 Science ON grade XII, 3

Define $E\subseteq \{f:[0,1]\to \mathbb{R}\mid f \textnormal{ is Riemann-integrable}\}$ such that $E$ posseses the following properties:\\ $\textbf{(i)}$ If $\int_0^1 f(x)g(x) dx = 0$ for $f\in E$ with $\int_0^1f^2(t)dt \neq 0$, then $g\in E$; \\ $\textbf{(ii)}$ There exists $h\in E$ with $\int_0^1 h^2(t)dt\neq 0$.\\ Prove that $E=\{f:[0,1]\to \mathbb{R}\mid f \textnormal{ is Riemann-integrable}\}$. \\ [i](Andrei Bâra)[/i]