This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2010 Vietnam Team Selection Test, 2

Let $ABC$ be a triangle with $ \widehat{BAC}\neq 90^\circ $. Let $M$ be the midpoint of $BC$. We choose a variable point $D$ on $AM$. Let $(O_1)$ and $(O_2)$ be two circle pass through $ D$ and tangent to $BC$ at $B$ and $C$. The line $BA$ and $CA$ intersect $(O_1),(O_2)$ at $ P,Q$ respectively. [b]a)[/b] Prove that tangent line at $P$ on $(O_1)$ and $Q$ on $(O_2)$ must intersect at $S$. [b]b)[/b] Prove that $S$ lies on a fix line.

2007 QEDMO 4th, 5

Let $ ABC$ be a triangle, and let $ X$, $ Y$, $ Z$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Denote by $ X^{\prime}$, $ Y^{\prime}$, $ Z^{\prime}$ the reflections of these points $ X$, $ Y$, $ Z$ in the midpoints of the segments $ BC$, $ CA$, $ AB$, respectively. Prove that $ \left\vert XYZ\right\vert \equal{}\left\vert X^{\prime}Y^{\prime}Z^{\prime}\right\vert$.

2012 Stanford Mathematics Tournament, 1

Compute the minimum possible value of $(x-1)^2+(x-2)^2+(x-3)^2+(x-4)^2+(x-5)^2$ For real values $x$

2015 Postal Coaching, Problem 4

Let $ABC$ be at triangle with incircle $\Gamma$. Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ be three circles inside $\triangle ABC$ each of which is tangent to $\Gamma$ and two sides of the triangle and their radii are $1,4,9$. Find the radius of $\Gamma$.

2012 Centers of Excellency of Suceava, 3

Prove that the sum of the squares of the medians of a triangle is at least $ 9/4 $ if the circumradius of the triangle, the area of the triangle and the inradius of the triangle (in this order) are in arithmetic progression. [i]Dumitru Crăciun[/i]

2024 Yasinsky Geometry Olympiad, 2

Let \( M \) be the midpoint of side \( BC \) of triangle \( ABC \), and let \( D \) be an arbitrary point on the arc \( BC \) of the circumcircle that does not contain \( A \). Let \( N \) be the midpoint of \( AD \). A circle passing through points \( A \), \( N \), and tangent to \( AB \) intersects side \( AC \) at point \( E \). Prove that points \( C \), \( D \), \( E \), and \( M \) are concyclic. [i]Proposed by Matthew Kurskyi[/i]

2021 China Team Selection Test, 5

Let $n$ be a positive integer and $a_1,a_2,\ldots a_{2n+1}$ be positive reals. For $k=1,2,\ldots ,2n+1$, denote $b_k = \max_{0\le m\le n}\left(\frac{1}{2m+1} \sum_{i=k-m}^{k+m} a_i \right)$, where indices are taken modulo $2n+1$. Prove that the number of indices $k$ satisfying $b_k\ge 1$ does not exceed $2\sum_{i=1}^{2n+1} a_i$.

2012 EGMO, 7

Let $ABC$ be an acute-angled triangle with circumcircle $\Gamma$ and orthocentre $H$. Let $K$ be a point of $\Gamma$ on the other side of $BC$ from $A$. Let $L$ be the reflection of $K$ in the line $AB$, and let $M$ be the reflection of $K$ in the line $BC$. Let $E$ be the second point of intersection of $\Gamma $ with the circumcircle of triangle $BLM$. Show that the lines $KH$, $EM$ and $BC$ are concurrent. (The orthocentre of a triangle is the point on all three of its altitudes.) [i]Luxembourg (Pierre Haas)[/i]

2006 Tournament of Towns, 3

A $3 \times 3$ square is filled with numbers: $a, b, c, d, e, f, g, h, i$ in the following way: [img]https://cdn.artofproblemsolving.com/attachments/8/9/737c41e9d0dbfdc81be1b986b8e680290db55e.png[/img] Given that the square is magic (sums of the numbers in each row, column and each of two diagonals are the same), show that a) $2(a + c + g + i) = b + d + f + h + 4e$. (3) b) $2(a^3 + c^3 + g^3 + i^3) = b^3 + d^3 + f^3 + h^3 + 4e^3$. (3)

2020 LIMIT Category 1, 7

Let $P(x)=x^6-x^5-x^3-x^2-x$ and $a,b,c$ and $d$ be the roots of the equation $x^4-x^3-x^2-1=0$, then determine the value of $P(a)+P(b)+P(c)+P(d)$ (A)$5$ (B)$6$ (C)$7$ (D)$8$

1948 Moscow Mathematical Olympiad, 143

On a plane, $n$ straight lines are drawn. Two domains are called [i]adjacent [/i] if they border by a line segment. Prove that the domains into which the plane is divided by these lines can be painted two colors so that no two [i]adjacent [/i] domains are of the same color.

2011 Indonesia TST, 1

Let $Q^+$ denote the set of positive rationals. Determine all functions $f : Q^+ \to Q^+$ that satisfy both of these conditions: (i) $f(x)$ is an integer if and only if $x$ is an integer; (ii) $f(f(xf(y)) + x) = yf(x) + x$ for all $x, y \in Q^+$.

2017 Math Prize for Girls Problems, 8

Let $c$ be a complex number. Suppose there exist distinct complex numbers $r$, $s$, and $t$ such that for every complex number $z$, we have \[ (z - r)(z - s)(z - t) = (z - cr)(z - cs)(z - ct). \] Compute the number of distinct possible values of $c$.

2019 Iran Team Selection Test, 4

Tags: geometry
Consider triangle $ABC$ with orthocenter $H$. Let points $M$ and $N$ be the midpoints of segments $BC$ and $AH$. Point $D$ lies on line $MH$ so that $AD\parallel BC$ and point $K$ lies on line $AH$ so that $DNMK$ is cyclic. Points $E$ and $F$ lie on lines $AC$ and $AB$ such that $\angle EHM=\angle C$ and $\angle FHM=\angle B$. Prove that points $D,E,F$ and $K$ lie on a circle. [i]Proposed by Alireza Dadgarnia[/i]

2009 JBMO Shortlist, 1

Each one of 2009 distinct points in the plane is coloured in blue or red, so that on every blue-centered unit circle there are exactly two red points. Find the gratest possible number of blue points.

1987 Tournament Of Towns, (135) 4

We are given tiles in the form of right angled triangles having perpendicular sides of length $1$ cm and $2$ cm. Is it possible to form a square from $20$ such tiles? ( S . Fomin , Leningrad)

2007 ITAMO, 5

The sequence of integers $(a_{n})_{n \ge 1}$ is defined by $a_{1}= 2$, $a_{n+1}= 2a_{n}^{2}-1$. Prove that for each positive integer n, $n$ and $a_{n}$ are coprime.

1984 IMO Longlists, 28

A “number triangle” $(t_{n, k}) (0 \le k \le n)$ is defined by $t_{n,0} = t_{n,n} = 1 (n \ge 0),$ \[t_{n+1,m} =(2 -\sqrt{3})^mt_{n,m} +(2 +\sqrt{3})^{n-m+1}t_{n,m-1} \quad (1 \le m \le n)\] Prove that all $t_{n,m}$ are integers.

2010 USAJMO, 5

Tags:
Two permutations $a_1,a_2,\dots,a_{2010}$ and $b_1,b_2,\dots,b_{2010}$ of the numbers $1,2,\dots,2010$ are said to [i]intersect[/i] if $a_k=b_k$ for some value of $k$ in the range $1\le k\le 2010$. Show that there exist $1006$ permutations of the numbers $1,2,\dots,2010$ such that any other such permutation is guaranteed to intersect at least one of these $1006$ permutations.

2023 AIME, 2

Tags:
Recall that a palindrome is a number that reads the same forward and backward. Find the greatest integer less than $1000$ that is a palindrome both when written in base ten and when written in base eight, such as $292=444_{\text{eight}}$.

2009 Today's Calculation Of Integral, 432

Define the function $ f(t)\equal{}\int_0^1 (|e^x\minus{}t|\plus{}|e^{2x}\minus{}t|)dx$. Find the minimum value of $ f(t)$ for $ 1\leq t\leq e$.

PEN J Problems, 4

Let $m$, $n$ be positive integers. Prove that, for some positive integer $a$, each of $\phi(a)$, $\phi(a+1)$, $\cdots$, $\phi(a+n)$ is a multiple of $m$.

Durer Math Competition CD Finals - geometry, 2022.C3

To the exterior of side $AB$ of square $ABCD$, we have drawn the regular triangle $ABE$. Point $A$ reflected on line $BE$ is $F$, and point $E$ reflected on line $BF$ is $G$. Let the perpendicular bisector of segment $FG$ meet segment $AD$ at $X$. Show that the circle centered at $X$ with radius $XA$ touches line$ FB$.

Putnam 1939, B7

Tags:
Do either $(1)$ or $(2)$: $(1)$ Let $ai = \sum_{n=0}^{\infty} \dfrac{x^{3n+i}}{(3n+i)!}$ Prove that $a_0^3 + a_1^3 + a_2^3 - 3 a_0a_1a_2 = 1.$ $(2)$ Let $O$ be the origin, $\lambda$ a positive real number, $C$ be the conic $ax^2 + by^2 + cx + dy + e = 0,$ and $C\lambda$ the conic $ax^2 + by^2 + \lambda cx + \lambda dy + \lambda 2e = 0.$ Given a point $P$ and a non-zero real number $k,$ define the transformation $D(P,k)$ as follows. Take coordinates $(x',y')$ with $P$ as the origin. Then $D(P,k)$ takes $(x',y')$ to $(kx',ky').$ Show that $D(O,\lambda)$ and $D(A,-\lambda)$ both take $C$ into $C\lambda,$ where $A$ is the point $(\dfrac{-c \lambda} {(a(1 + \lambda))}, \dfrac{-d \lambda} {(b(1 + \lambda))}) $. Comment on the case $\lambda = 1.$

2000 National Olympiad First Round, 35

Tags:
If every $k-$element subset of $S=\{1,2,\dots , 32\}$ contains three different elements $a,b,c$ such that $a$ divides $b$, and $b$ divides $c$, $k$ must be at least ? $ \textbf{(A)}\ 17 \qquad\textbf{(B)}\ 24 \qquad\textbf{(C)}\ 25 \qquad\textbf{(D)}\ 29 \qquad\textbf{(E)}\ \text{None} $