Found problems: 85335
2013 MTRP Senior, 1
Find how many committees with a chairman can be chosen from a set of n persons. Hence or otherwise prove that
$${n \choose 1} + 2{n \choose 2} + 3{n \choose 3} + ...... + n{n \choose n} = n2^{n-1}$$
2024 Mexican University Math Olympiad, 6
Let \( p \) be a monic polynomial with all distinct real roots. Show that there exists \( K \) such that
\[
(p(x)^2)'' \leq K(p'(x))^2.
\]
2003 Czech And Slovak Olympiad III A, 2
On sides $BC,CA,AB$ of a triangle $ABC$ points $D,E,F$ respectively are chosen so that $AD,BE,CF$ have a common point, say $G$. Suppose that one can inscribe circles in the quadrilaterals $AFGE,BDGF,CEGD$ so that each two of them have a common point. Prove that triangle $ABC$ is equilateral.
2002 Junior Balkan Team Selection Tests - Moldova, 2
$64$ distinct points are positioned in the plane so that they determine exactly $2003$ different lines. Prove that among the $64$ points there are at least $4$ collinear points.
2010 Today's Calculation Of Integral, 625
Find $\lim_{t\rightarrow 0}\frac{1}{t^3}\int_0^{t^2} e^{-x}\sin \frac{x}{t}\ dx\ (t\neq 0).$
[i]2010 Kumamoto University entrance exam/Medicine[/i]
2023 Mexico National Olympiad, 2
The numbers from $1$ to $2000$ are placed on the vertices of a regular polygon with $2000$ sides, one on each vertex, so that the following is true: If four integers $A, B, C, D$ satisfy that $1 \leq A<B<C<D \leq 2000$, then the segment that joins the vertices of the numbers $A$ and $B$ and the segment that joins the vertices of $C$ and $D$ do not intersect inside the polygon. Prove that there exists a perfect square such that the number diametrically opposite to it is not a perfect square.
2012 AMC 10, 19
In rectangle $ABCD$, $AB=6$, $AD=30$, and $G$ is the midpoint of $\overline{AD}$. Segment $AB$ is extended $2$ units beyond $B$ to point $E$, and $F$ is the intersection of $\overline{ED}$ and $\overline{BC}$. What is the area of $BFDG$?
$ \textbf{(A)}\ \frac{133}{2}\qquad\textbf{(B)}\ 67\qquad\textbf{(C)}\ \frac{135}{2}\qquad\textbf{(D)}\ 68\qquad\textbf{(E)}\ \frac{137}{2}$
2002 Junior Balkan Team Selection Tests - Romania, 2
We are given $n$ circles which have the same center. Two lines $D_1,D_2$ are concurent in $P$, a point inside all circles. The rays determined by $P$ on the line $D_i$ meet the circles in points $A_1,A_2,...,A_n$ and $A'_1, A'_2,..., A'_n$ respectively and the rays on $D_2$ meet the circles at points $B_1,B_2, ... ,B_n$ and $B'_2, B'_2 ..., B'_n$ (points with the same indices lie on the same circle). Prove that if the arcs $A_1B_1$ and $A_2B_2$ are equal then the arcs $A_iB_i$ and $A'_iB'_i$ are equal, for all $i = 1,2,... n$.
2022 Austrian MO National Competition, 1
Prove that for all positive real numbers $x, y$ and $z$, the double inequality $$0 < \frac{1}{x + y + z + 1} -\frac{1}{(x + 1)(y + 1)(z + 1)} \le \frac18$$ holds. When does equality hold in the right inequality?
[i](Walther Janous)[/i]
2003 Gheorghe Vranceanu, 2
Let be a real number $ a $ and a function $ f:[a,\infty )\longrightarrow\mathbb{R} $ that is continuous at $ a. $ Prove that $ f $ is primitivable on $ (a,\infty ) $ if and only if $ f $ is primitivable on $ [a,\infty ) . $
2015 BMT Spring, 3
Find all integer solutions to
\begin{align*}
x^2+2y^2+3z^2&=36,\\
3x^2+2y^2+z^2&=84,\\
xy+xz+yz&=-7.
\end{align*}
2022 Puerto Rico Team Selection Test, 1
Let's call a natural number [i] interesting[/i] if any of its two digits consecutive forms a number that is a multiple of $19$ or $21$. For example, The number $7638$ is interesting, because $76$ is a multiple of $19$, $63$ is multiple of $21$, and $38$ is a multiple of $19$. How many interesting numbers of $2022$ digits exist?
2023 India Regional Mathematical Olympiad, 4
Let $\Omega_1, \Omega_2$ be two intersecting circles with centres $O_1, O_2$ respectively. Let $l$ be a line that intersects $\Omega_1$ at points $A, C$ and $\Omega_2$ at points $B, D$ such that $A, B, C, D$ are collinear in that order. Let the perpendicular bisector of segment $A B$ intersect $\Omega_1$ at points $P, Q$; and the perpendicular bisector of segment $C D$ intersect $\Omega_2$ at points $R, S$ such that $P, R$ are on the same side of $l$. Prove that the midpoints of $P R, Q S$ and $O_1 O_2$ are collinear.
1986 Tournament Of Towns, (112) 6
( "Sisyphian Labour" )
There are $1001$ steps going up a hill , with rocks on some of them {no more than 1 rock on each step ) . Sisyphus may pick up any rock and raise it one or more steps up to the nearest empty step . Then his opponent Aid rolls a rock (with an empty step directly below it) down one step . There are $500$ rocks, originally located on the first $500$ steps. Sisyphus and Aid move rocks in turn , Sisyphus making the first move . His goal is to place a rock on the top step.
Can Aid stop him?
( S . Yeliseyev)
2010 Contests, 2
A number is called polite if it can be written as $ m + (m+1)+...+ n$, for certain positive integers $ m <n$ . For example: $18$ is polite, since $18 =5 + 6 + 7$. A number is called a power of two if it can be written as $2^{\ell}$ for
some integer $\ell \ge 0$.
(a) Show that no number is both polite and a power of two.
(b) Show that every positive integer is polite or a power of two.
2013 Romanian Master of Mathematics, 2
Does there exist a pair $(g,h)$ of functions $g,h:\mathbb{R}\rightarrow\mathbb{R}$ such that the only function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=h(f(x))$ for all $x\in\mathbb{R}$ is identity function $f(x)\equiv x$?
2018 Oral Moscow Geometry Olympiad, 5
Two ants sit on the surface of a tetrahedron. Prove that they can meet by breaking the sum of a distance not exceeding the diameter of a circle is circumscribed around the edge of a tetrahedron.
1991 Flanders Math Olympiad, 3
Given $\Delta ABC$ equilateral, with $X\in[A,B]$. Then we define unique points Y,Z so that $Y\in[B,C]$, $Z\in[A,C]$, $\Delta XYZ$ equilateral.
If $Area\left(\Delta ABC\right) = 2 \cdot Area\left(\Delta XYZ\right)$, find the ratio of $\frac{AX}{XB},\frac{BY}{YC},\frac{CZ}{ZA}$.
2018 CMIMC Individual Finals, 2
How many integer values of $k$, with $1 \leq k \leq 70$, are such that $x^{k}-1 \equiv 0 \pmod{71}$ has at least $\sqrt{k}$ solutions?
2004 India IMO Training Camp, 3
Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$.
[i]Radu Gologan, Romania[/i]
[hide="Remark"]
The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url].
[/hide]
2014 Contests, 3
For even positive integer $n$ we put all numbers $1,2,...,n^2$ into the squares of an $n\times n$ chessboard (each number appears once and only once).
Let $S_1$ be the sum of the numbers put in the black squares and $S_2$ be the sum of the numbers put in the white squares. Find all $n$ such that we can achieve $\frac{S_1}{S_2}=\frac{39}{64}.$
2016 NIMO Problems, 4
Triangle $ABC$ has $AB=13$, $BC=14$, and $CA=15$. Let $\omega_A$, $\omega_B$ and $\omega_C$ be circles such that $\omega_B$ and $\omega_C$ are tangent at $A$, $\omega_C$ and $\omega_A$ are tangent at $B$, and $\omega_A$ and $\omega_B$ are tangent at $C$. Suppose that line $AB$ intersects $\omega_B$ at a point $X \neq A$ and line $AC$ intersects $\omega_C$ at a point $Y \neq A$. If lines $XY$ and $BC$ intersect at $P$, then $\tfrac{BC}{BP} = \tfrac{m}{n}$ for coprime positive integers $m$ and $n$. Find $100m+n$.
[i]Proposed by Michael Ren[/i]
2012 Irish Math Olympiad, 3
Suppose $a,b,c$ are positive numbers. Prove that $$\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)^2\ge (2a+b+c) \left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)$$ with equality if and only if $a=b=c$.
2006 Chile National Olympiad, 4
Let $n$ be a $6$-digit number, perfect square and perfect cube, if $n -6$ is neither even nor multiple of $3$. Find $n$ .
2016 Saint Petersburg Mathematical Olympiad, 1
In the sequence of integers $(a_n)$, the sum $a_m + a_n$ is divided by $m + n$ with any different $m$ and $n$. Prove that $a_n$ is a multiple of $n$ for any $n$.