This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022 JHMT HS, 3

Let $x$ be a variable that can take any positive real value. For certain positive real constants $s$ and $t$, the value of $x^2 + \frac{s}{x}$ is minimized at $x = t$, and the value of $t^2\ln(2 + tx) + \frac{1}{x^2}$ is minimized at $x = s$. Compute the ordered pair $(s, t)$.

2014 Czech-Polish-Slovak Junior Match, 5

There is the number $1$ on the board at the beginning. If the number $a$ is written on the board, then we can also write a natural number $b$ such that $a + b + 1$ is a divisor of $a^2 + b^2 + 1$. Can any positive integer appear on the board after a certain time? Justify your answer.

1971 AMC 12/AHSME, 9

An uncrossed belt is fitted without slack around two circular pulleys with radii of $14$ inches and $4$ inches. If the distance between the points of contact of the belt with the pulleys is $24$ inches, then the distance between the centers of the pulleys in inches is $\textbf{(A) }24\qquad\textbf{(B) }2\sqrt{119}\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad \textbf{(E) }4\sqrt{35}$

1997 Vietnam National Olympiad, 2

Prove that for evey positive integer n, there exits a positive integer k such that $ 2^n | 19^k \minus{} 97$

1998 Yugoslav Team Selection Test, Problem 1

From a deck of playing cards, four [i]threes[/i], four [i]fours[/i] and four [i]fives[/i] are selected and put down on a table with the main side up. Players $A$ and $B$ alternately take the cards one by one and put them on the pile. Player $A$ begins. A player after whose move the sum of values of the cards on the pile is (a) greater than 34; (b) greater than 37; loses the game. Which player has a winning strategy?

2011 Today's Calculation Of Integral, 728

Evaluate \[\int_{\frac {\pi}{12}}^{\frac{\pi}{6}} \frac{\sin x-\cos x-x(\sin x+\cos x)+1}{x^2-x(\sin x+\cos x)+\sin x\cos x}\ dx.\]

1997 Taiwan National Olympiad, 9

For $n\geq k\geq 3$, let $X=\{1,2,...,n\}$ and let $F_{k}$ a the family of $k$-element subsets of $X$, any two of which have at most $k-2$ elements in common. Show that there exists a subset $M_{k}$ of $X$ with at least $[\log_{2}{n}]+1$ elements containing no subset in $F_{k}$.

2014 AMC 10, 18

A square in the coordinate plane has vertices whose $y$-coordinates are $0$, $1$, $4$, and $5$. What is the area of the square? $ \textbf{(A)}\ 16\qquad\textbf{(B)}\ 17\qquad\textbf{(C)}\ 25\qquad\textbf{(D)}\ 26\qquad\textbf{(E)}\ 27 $

2005 USAMTS Problems, 3

Let $r$ be a nonzero real number. The values of $z$ which satisfy the equation \[ r^4z^4 + (10r^6-2r^2)z^2-16r^5z+(9r^8+10r^4+1) = 0 \] are plotted on the complex plane (i.e. using the real part of each root as the x-coordinate and the imaginary part as the y-coordinate). Show that the area of the convex quadrilateral with these points as vertices is independent of $r$, and find this area.

2021 China Team Selection Test, 2

Tags: geometry , harmonic
Let triangle$ABC(AB<AC)$ with incenter $I$ circumscribed in $\odot O$. Let $M,N$ be midpoint of arc $\widehat{BAC}$ and $\widehat{BC}$, respectively. $D$ lies on $\odot O$ so that $AD//BC$, and $E$ is tangency point of $A$-excircle of $\bigtriangleup ABC$. Point $F$ is in $\bigtriangleup ABC$ so that $FI//BC$ and $\angle BAF=\angle EAC$. Extend $NF$ to meet $\odot O$ at $G$, and extend $AG$ to meet line $IF$ at L. Let line $AF$ and $DI$ meet at $K$. Proof that $ML\bot NK$.

2015 Poland - Second Round, 3

Let $ABC$ be a triangle. Let $K$ be a midpoint of $BC$ and $M$ be a point on the segment $AB$. $L=KM \cap AC$ and $C$ lies on the segment $AC$ between $A$ and $L$. Let $N$ be a midpoint of $ML$. $AN$ cuts circumcircle of $\Delta ABC$ in $S$ and $S \neq N$. Prove that circumcircle of $\Delta KSN$ is tangent to $BC$.

2005 District Olympiad, 2

Let $ABCD$ and $ABEF$ be two squares situated in two perpendicular planes and let $O$ be the intersection of the lines $AE$ and $BF$. If $AB=4$ compute: a) the distance from $B$ to the line of intersection between the planes $(DOC)$ and $(DAF)$; b) the distance between the lines $AC$ and $BF$.

1969 IMO Shortlist, 64

$(USS 1)$ Prove that for a natural number $n > 2, (n!)! > n[(n - 1)!]^{n!}.$

1961 AMC 12/AHSME, 33

Tags:
The number of solutions of $2^{2x}-3^{2y}=55$, in which $x$ and $y$ are integers, is: ${{ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3}\qquad\textbf{(E)}\ \text{More than three, but finite} } $

2020 May Olympiad, 1

We say that a positive integer is super odd if all of its digits are odd. For example, 1737 is super odd and 3051 is not. Find an even positive integer that cannot be express as a sum of two super odd numbers and explain why it is not possible to express it thus.

2017 Sharygin Geometry Olympiad, 6

A median of an acute-angled triangle dissects it into two triangles. Prove that each of them can be covered by a semidisc congruent to a half of the circumdisc of the initial triangle.

2015 Romania National Olympiad, 1

Let be a ring that has the property that all its elements are the product of two idempotent elements of it. Show that: [b]a)[/b] $ 1 $ is the only unit of this ring. [b]b)[/b] this ring is Boolean.

1974 All Soviet Union Mathematical Olympiad, 201

Find all the three-digit numbers such that it equals to the arithmetic mean of the six numbers obtained by rearranging its digits.

2024 HMNT, 22

Tags: guts
Suppose that $a$ and $b$ are positive integers such that $\gcd(a^3 - b^3,(a-b)^3)$ is not divisible by any perfect square except $1.$ Given that $1 \le a-b \le 50,$ compute the number of possible values of $a-b$ across all such $a,b.$

2018 Argentina National Olympiad Level 2, 1

A list of $2018$ numbers is created using the following procedure: the first number is $47$, the second number is $74$, and from there, each number is equal to the number formed by the last two digits of the sum of the two previous numbers:$$47, 74, 21, 95, 16, 11, \dots$$ Bruno squares each of the $2018$ numbers and sums them. Determine the remainder when this sum is divided by $8$.

2007 Stanford Mathematics Tournament, 10

Tags:
Al, Betty, and Clara are in the same class of 50 students total, but are not friends with each other. Al is friends with 24 students, Betty is friends with 39, and Clara is friends with 20. What is the greatest number of students that could be friends with all 3 of them?

2017 Taiwan TST Round 1, 2

Tags: geometry
Let $B = (-1, 0)$ and $C = (1, 0)$ be fixed points on the coordinate plane. A nonempty, bounded subset $S$ of the plane is said to be [i]nice[/i] if $\text{(i)}$ there is a point $T$ in $S$ such that for every point $Q$ in $S$, the segment $TQ$ lies entirely in $S$; and $\text{(ii)}$ for any triangle $P_1P_2P_3$, there exists a unique point $A$ in $S$ and a permutation $\sigma$ of the indices $\{1, 2, 3\}$ for which triangles $ABC$ and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar. Prove that there exist two distinct nice subsets $S$ and $S'$ of the set $\{(x, y) : x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in $\text{(ii)}$, then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.

2013 Czech And Slovak Olympiad IIIA, 6

Find all positive real numbers $p$ such that $\sqrt{a^2 + pb^2} +\sqrt{b^2 + pa^2} \ge a + b + (p - 1) \sqrt{ab}$ holds for any pair of positive real numbers $a, b$.

1996 ITAMO, 3

Given a cube of unit side. Let $A$ and $B$ be two opposite vertex. Determine the radius of the sphere, with center inside the cube, tangent to the three faces of the cube with common point $A$ and tangent to the three sides with common point $B$.

2011 Morocco TST, 3

The vertices $X, Y , Z$ of an equilateral triangle $XYZ$ lie respectively on the sides $BC, CA, AB$ of an acute-angled triangle $ABC.$ Prove that the incenter of triangle $ABC$ lies inside triangle $XYZ.$ [i]Proposed by Nikolay Beluhov, Bulgaria[/i]