Found problems: 85335
2004 VTRMC, Problem 6
An enormous party has an infinite number of people. Each two people either know or don't know each other. Given a positive integer $n$, prove there are $n$ people in the party such that either they all know each other, or nobody knows each other (so the first possibility means that if $A$ and $B$ are any two of the $n$ people, then $A$ knows $B$, whereas the second possibility means that if $A$ and $B$ are any two of the $n$ people, then $A$ does not know $B$).
1995 Belarus Team Selection Test, 1
There is a 100 x100 square table, a real number being written in each cell.$A$ and $B$ play the following game. They choose, turn by turn, some row of the table (if it has not been chosen before). When $A$ and $B$ have $50$ rows chosen each, they sum the numbers in the corresponding cells of the chosen rows, and then sum the squares of all $100$ obtained numbers and compare the results. $A$ player who has the greater result wins. Player $A$ begins. Show that $A$ can avoid a defeat.
1998 Gauss, 5
If a machine produces $150$ items in one minute, how many would it produce in $10$ seconds?
$\textbf{(A)}\ 10 \qquad \textbf{(B)}\ 15 \qquad \textbf{(C)}\ 20 \qquad \textbf{(D)}\ 25 \qquad \textbf{(E)}\ 30$
2008 F = Ma, 4
What is the maximum displacement from start for the toy car?
(a) $\text{3 m}$
(b) $\text{5 m}$
(c) $\text{6.5 m}$
(d) $\text{7 m}$
(e) $\text{7.5 m}$
2001 China Team Selection Test, 2
Let $\theta_i \in \left ( 0,\frac{\pi}{4} \right ]$ for $i=1,2,3,4$. Prove that:
$\tan \theta _1 \tan \theta _2 \tan \theta _3 \tan \theta _4 \le (\frac{\sin^8 \theta _1+\sin^8 \theta _2+\sin^8 \theta _3+\sin^8 \theta _4}{\cos^8 \theta _1+\cos^8 \theta _2+\cos^8 \theta _3+\cos^8 \theta _4})^\frac{1}{2}$
[hide=edit]@below, fixed now. There were some problems (weird characters) so aops couldn't send it.[/hide]
2021 Princeton University Math Competition, 10
Determine the number of pairs $(a, b)$, where $1 \le a \le b \le 100$ are positive integers, so that $\frac{a^3+b^3}{a^2+b^2}$ is an integer.
2024 Korea Junior Math Olympiad, 1
Find the number of distinct positive integer pairs $(x, y, z)$ that
$$\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}=\frac{11}{12}$$
2017 USAJMO, 3
Let $ABC$ be an equilateral triangle, and point $P$ on its circumcircle. Let $PA$ and $BC$ intersect at $D$, $PB$ and $AC$ intersect at $E$, and $PC$ and $AB$ intersect at $F$. Prove that the area of $\triangle DEF$ is twice the area of $\triangle ABC$.
[i]Proposed by Titu Andreescu, Luis Gonzales, Cosmin Pohoata[/i]
1975 Vietnam National Olympiad, 3
Let $ABCD$ be a tetrahedron with $BA \perp AC,DB \perp (BAC)$. Denote by $O$ the midpoint of $AB$, and $K$ the foot of the perpendicular from $O$ to $DC$. Suppose that $AC = BD$. Prove that $\frac{V_{KOAC}}{V_{KOBD}}=\frac{AC}{BD}$ if and only if $2AC \cdot BD = AB^2$.
2021 Pan-African, 2
Let $\Gamma$ be a circle, $P$ be a point outside it, and $A$ and $B$ the intersection points between $\Gamma$ and the tangents from $P$ to $\Gamma$. Let $K$ be a point on the line $AB$, distinct from $A$ and $B$ and let $T$ be the second intersection point of $\Gamma$ and the circumcircle of the triangle $PBK$.Also, let $P'$ be the reflection of $P$ in point $A$.
Show that $\angle PBT=\angle P'KA$
1952 AMC 12/AHSME, 40
In order to draw a graph of $ f(x) \equal{} ax^2 \plus{} bx \plus{} c$, a table of values was constructed. These values of the function for a set of equally spaced increasing values of $ x$ were $ 3844$, $ 3969$, $ 4096$, $ 4227$, $ 4356$, $ 4489$, $ 4624$, and $ 4761$. The one which is incorrect is:
$ \textbf{(A)}\ 4096 \qquad\textbf{(B)}\ 4356 \qquad\textbf{(C)}\ 4489 \qquad\textbf{(D)}\ 4761 \qquad\textbf{(E)}\ \text{none of these}$
2021 XVII International Zhautykov Olympiad, #3
Let $n\ge 2$ be an integer. Elwyn is given an $n\times n$ table filled with real numbers (each cell of the table contains exactly one number). We define a [i]rook set[/i] as a set of $n$ cells of the table situated in $n$ distinct rows as well as in n distinct columns. Assume that, for every rook set, the sum of $n$ numbers in the cells forming the set is nonnegative.\\
\\ By a move, Elwyn chooses a row, a column, and a real number $a,$ and then he adds $a$ to each number in the chosen row, and subtracts $a$ from each number in the chosen column (thus, the number at the intersection of the chosen row and column does not change). Prove that Elwyn can perform a sequence of moves so that all numbers in the table become nonnegative.
2013 Vietnam Team Selection Test, 1
The $ABCD$ is a cyclic quadrilateral with no parallel sides inscribed in circle $(O, R)$. Let $E$ be the intersection of two diagonals and the angle bisector of $AEB$ cut the lines $AB, BC, CD, DA$ at $M, N, P, Q$ respectively .
a) Prove that the circles $(AQM), (BMN), (CNP), (DPQ)$ are passing through a point. Call that point $K$.
b) Denote $min \,\{AC, BD\} = m$. Prove that $OK \le \dfrac{2R^2}{\sqrt{4R^2-m^2}}$.
Swiss NMO - geometry, 2007.4
Let $ABC$ be an acute-angled triangle with $AB> AC$ and orthocenter $H$. Let $D$ the projection of $A$ on $BC$. Let $E$ be the reflection of $C$ wrt $D$. The lines $AE$ and $BH$ intersect at point $S$. Let $N$ be the midpoint of $AE$ and let $M$ be the midpoint of $BH$. Prove that $MN$ is perpendicular to $DS$.
2017-IMOC, N2
On the blackboard, there are $K$ blanks. Alice decides $N$ values of blanks $(0-9)$ and then Bob determines the remaining digits. Find the largest possible integer $N$ such that Bob can guarantee to make the final number isn't a power of an integer.
2013 QEDMO 13th or 12th, 10
Let $p$ be a prime number gretater then $3$. What is the number of pairs $(m, n)$ of integers with $0 <m <n <p$, for which the polynomial $x^p + px^n + px^m +1$ is not a product of two non-constant polynomials with integer coefficients can be written?
1999 Tournament Of Towns, 4
(a) On each of the $1 \times 1$ squares of the top row of an $8 \times 8$ chessboard there is a black pawn, and on each of the $1 \times 1$ squares of the bottom row of this chessboard there is a white pawn. On each move one can shift any pawn vertically or horizontally to any adjacent empty $1 \times 1$ square. What is the smallest number of moves that are needed to move all white pawns to the top row and all black pawns to the bottom one?
(b) The same question for a $7 \times 7$ board.
(A Shapovalov_
1999 Kazakhstan National Olympiad, 1
Prove that for any real numbers $ a_1, a_2, \dots, a_ {100} $ there exists a real number $ b $ such that all numbers $ a_i + b $ ($ 1 \leq i \leq 100 $) are irrational.
2017 Brazil Undergrad MO, 3
Let $X = \{(x,y) \in \mathbb{R}^2 | y \geq 0, x^2+y^2 = 1\} \cup \{(x,0),-1\leq x\leq 1\} $ be the edge of the closed semicircle with radius 1.
a) Let $n>1$ be an integer and $P_1,P_2,\dots,P_n \in X$. Show that there exists a permutation $\sigma \colon \{1,2,\dots,n\}\to \{1,2,\dots,n\}$ such that
\[\sum_{j=1}^{n}|P_{\sigma(j+1)}-P_{\sigma(j)}|^2\leq 8\].
Where $\sigma(n+1) = \sigma(1)$.
b) Find all sets $\{P_1,P_2,\dots,P_n \} \subset X$ such that for any permutation $\sigma \colon \{1,2,\dots,n\}\to \{1,2,\dots,n\}$,
\[\sum_{j=1}^{n}|P_{\sigma(j+1)}-P_{\sigma(j)}|^2 \geq 8\].
Where $\sigma(n+1) = \sigma(1)$.
2003 Alexandru Myller, 1
Let be the sequence of sets $ \left(\left\{ A\in\mathcal{M}_2\left(\mathbb{R} \right) | A^{n+1} =2003^nA\right\}\right)_{n\ge 1} . $
[b]a)[/b] Prove that each term of the above sequence hasn't a finite cardinal.
[b]b)[/b] Determine the intersection of the third element of the above sequence with the $ 2003\text{rd} $ element.
[i]Gheorghe Iurea[/i]
[hide=Note]Similar with [url]https://artofproblemsolving.com/community/c7h1943241p13387495[/url].[/hide]
1998 Abels Math Contest (Norwegian MO), 4
Let $A,B,P$ be points on a line $\ell$, with $P$ outside the segment $AB$. Lines $a$ and $b$ pass through $A$ and $B$ and are perpendicular to $\ell$. A line $m$ through $P$, which is neither parallel nor perpendicular to $\ell$, intersects $a$ and $b$ at $Q$ and $R$, respectively. The perpendicular from $B$ to $AR$ meets $a$ and $AR$ at $S$ and $U$, and the perpendicular from $A$ to $BQ$ meets $b$ and $BQ$ at $T$ and $V$, respectively.
(a) Prove that $P,S,T$ are collinear.
(b) Prove that $P,U,V$ are collinear.
2022 AMC 12/AHSME, 16
A [i]triangular number[/i] is a positive integer that can be expressed in the form $t_n = 1 + 2 + 3 +\cdots + n$, for some positive integer $n$. The three smallest triangular numbers that are also perfect squares are $t_1 = 1 = 1^2$, $t_8 = 36 = 6^2$, and $t_{49} = 1225 = 35^2$. What is the sum of the digits of the fourth smallest triangular number that is also a perfect square?
$\textbf{(A)} ~6 \qquad\textbf{(B)} ~9 \qquad\textbf{(C)} ~12 \qquad\textbf{(D)} ~18 \qquad\textbf{(E)} ~27 $
Maryland University HSMC part II, 1999
[b]p1.[/b] Twelve tables are set up in a row for a Millenium party. You want to put $2000$ cupcakes on the tables so that the numbers of cupcakes on adjacent tables always differ by one (for example, if the $5$th table has $20$ cupcakes, then the $4$th table has either $19$ or $21$ cupcakes, and the $6$th table has either $19$ or $21$ cupcakes).
a) Find a way to do this.
b) Suppose a Y2K bug eats one of the cupcakes, so you have only $1999$ cupcakes. Show that it is impossible to arrange the cupcakes on the tables according to the above conditions.
[b]p2.[/b] Let $P$ and $Q$ lie on the hypotenuse $AB$ of the right triangle $CAB$ so that $|AP|=|PQ|=|QB|=|AB|/3$. Suppose that $|CP|^2+|CQ|^2=5$. Prove that $|AB|$ has the same value for all such triangles, and find that value. Note: $|XY|$ denotes the length of the segment $XY$.
[b]p3.[/b] Let $P$ be a polynomial with integer coefficients and let $a, b, c$ be integers. Suppose $P(a)=b$, $P(b)=c$, and $P(c)=a$. Prove that $a=b=c$.
[b]p4.[/b] A lattice point is a point $(x,y)$ in the plane for which both $x$ and $y$ are integers. Each lattice point is painted with one of $1999$ available colors. Prove that there is a rectangle (of nonzero height and width) whose corners are lattice points of the same color.
[b]p5.[/b] A $1999$-by-$1999$ chocolate bar has vertical and horizontal grooves which divide it into $1999^2$ one-by-one squares. Caesar and Brutus are playing the following game with the chocolate bar: A move consists of a player picking up one chocolate rectangle; breaking it along a groove into two smaller rectangles; and then either putting both rectangles down or eating one piece and putting the other piece down. The players move alternately. The one who cannot make a move at his turn (because there are only one-by-one squares left) loses. Caesar starts. Which player has a winning strategy? Describe a winning strategy for that player.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 BMT Spring, 5
A point is picked uniformly at random inside of a square. Four segments are then drawn in connecting the point to each of the vertices of the square, cutting the square into four triangles. What is the probability that at least two of the resulting triangles are obtuse?
1998 Tournament Of Towns, 3
(a) The numbers $1 , 2, 4, 8, 1 6 , 32, 64, 1 28$ are written on a blackboard.
We are allowed to erase any two numbers and write their difference instead (this is always a non-negative number). After this procedure has been repeated seven times, only a single number will remain. Could this number be $97$?
(b) The numbers $1 , 2, 22, 23 , . . . , 210$ are written on a blackboard.
We are allowed to erase any two numbers and write their difference instead (this is always a non-negative number) . After this procedure has been repeated ten times, only a single number will remain. What values could this number have?
(A.Shapovalov)