This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2004 Flanders Junior Olympiad, 2

Tags:
How can you go from the number 11 to 25 by only multiplying with 2 or decreasing with 3 in a minimum number of steps?

2017 SG Originals, C1

A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even. [i]Proposed by Jeck Lim, Singapore[/i]

2007 Putnam, 4

A [i]repunit[/i] is a positive integer whose digits in base $ 10$ are all ones. Find all polynomials $ f$ with real coefficients such that if $ n$ is a repunit, then so is $ f(n).$

2008 Middle European Mathematical Olympiad, 1

Let $ (a_n)^{\infty}_{n\equal{}1}$ be a sequence of integers with $ a_{n} < a_{n\plus{}1}, \quad \forall n \geq 1.$ For all quadruple $ (i,j,k,l)$ of indices such that $ 1 \leq i < j \leq k < l$ and $ i \plus{} l \equal{} j \plus{} k$ we have the inequality $ a_{i} \plus{} a_{l} > a_{j} \plus{} a_{k}.$ Determine the least possible value of $ a_{2008}.$

2008 Vietnam National Olympiad, 3

Let $ m \equal{} 2007^{2008}$, how many natural numbers n are there such that $ n < m$ and $ n(2n \plus{} 1)(5n \plus{} 2)$ is divisible by $ m$ (which means that $ m \mid n(2n \plus{} 1)(5n \plus{} 2)$) ?

2022/2023 Tournament of Towns, P1

Find the maximum integer $m$ such that $m! \cdot 2022!$ is a factorial of an integer.

1997 Turkey Team Selection Test, 2

Show that for each prime $p \geq 7$, there exist a positive integer $n$ and integers $x_{i}$, $y_{i}$ $(i = 1, . . . , n)$, not divisible by $p$, such that $x_{i}^{2}+ y_{i}^{2}\equiv x_{i+1}^{2}\pmod{p}$ where $x_{n+1} = x_{1}$

LMT Team Rounds 2021+, 9

Tags: geometry
In $\vartriangle ABC$, $AB = 13$, $BC = 14,$ and $C A = 15$. Let $E$ and $F$ be the feet of the altitudes from $B$ onto $C A$, and $C$ onto $AB$, respectively. A line $\ell$ is parallel to $EF$ and tangent to the circumcircle of $ABC$ on minor arc $BC$. Let $X$ and $Y$ be the intersections of $\ell$ with $AB$ and $AC$ respectively. Find $X Y$ .

2011 Hanoi Open Mathematics Competitions, 4

Among the five statements on real numbers below, how many of them are correct? "If $a < b < 0$ then $a < b^2$" , "If $0 < a < b$ then $a < b^2$", "If $a^3 < b^3$ then $a < b$", "If $a^2 < b^2$ then $a < b$", "If $|a| < |b|$ then $a < b$", (A) $0$, (B) $1$, (C) $2$, (D) $3$, (E) $4$

2012 Vietnam Team Selection Test, 1

Consider the sequence $(x_n)_{n\ge 1}$ where $x_1=1,x_2=2011$ and $x_{n+2}=4022x_{n+1}-x_n$ for all $n\in\mathbb{N}$. Prove that $\frac{x_{2012}+1}{2012}$ is a perfect square.

2009 Belarus Team Selection Test, 3

Let $ a_0$, $ a_1$, $ a_2$, $ \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $ \gcd (a_i, a_{i \plus{} 1}) > a_{i \minus{} 1}$. Prove that $ a_n\ge 2^n$ for all $ n\ge 0$. [i]Proposed by Morteza Saghafian, Iran[/i]

2000 Junior Balkan Team Selection Tests - Romania, 3

Find all real numbers $ a $ such that $ x,y>a\implies x+y+xy>a. $ [i]Gheorghe Iurea[/i]

2011 Tournament of Towns, 7

The vertices of a regular $45$-gon are painted into three colors so that the number of vertices of each color is the same. Prove that three vertices of each color can be selected so that three triangles formed by the chosen vertices of the same color are all equal.

1999 AMC 8, 17

Tags:
Problems 17, 18, and 19 refer to the following: At Central Middle School the 108 students who take the AMC8 meet in the evening to talk about problems and eat an average of two cookies apiece. Walter and Gretel are baking Bonnie's Best Bar Cookies this year. Their recipe, which makes a pan of 15 cookies, lists this items: 1.5 cups flour, 2 eggs, 3 tablespoons butter, 3/4 cups sugar, and 1 package of chocolate drops. They will make only full recipes, not partial recipes. Walter can buy eggs by the half-dozen. How many half-dozens should he buy to make enough cookies? (Some eggs and some cookies may be left over.) $ \text{(A)}\ 1\qquad\text{(B)}\ 2\qquad\text{(C)}\ 5\qquad\text{(D)}\ 7\qquad\text{(E)}\ 15 $

2020 CMIMC Combinatorics & Computer Science, 3

Consider a $1$-indexed array that initially contains the integers $1$ to $10$ in increasing order. The following action is performed repeatedly (any number of times): [code] def action(): Choose an integer n between 1 and 10 inclusive Reverse the array between indices 1 and n inclusive Reverse the array between indices n+1 and 10 inclusive (If n = 10, we do nothing) [/code] How many possible orders can the array have after we are done with this process?

2009 Math Prize For Girls Problems, 18

Tags: factorial
The value of $ 21!$ is $ 51{,}090{,}942{,}171{,}abc{,}440{,}000$, where $ a$, $ b$, and $ c$ are digits. What is the value of $ 100a \plus{} 10b \plus{} c$?

2013 National Olympiad First Round, 33

Let $D$ be a point on side $[BC]$ of triangle $ABC$ such that $[AD]$ is an angle bisector, $|BD|=4$, and $|DC|=3$. Let $E$ be a point on side $[AB]$ and different than $A$ such that $m(\widehat{BED})=m(\widehat{DEC})$. If the perpendicular bisector of segment $[AE]$ meets the line $BC$ at $M$, what is $|CM|$? $ \textbf{(A)}\ 12 \qquad\textbf{(B)}\ 9 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ \text { None of above} $

Mathematical Minds 2024, P8

Let $ABC$ be a triangle with circumcircle $\Omega$, incircle $\omega$, and $A$-excircle $\omega_A$. Let $X$ and $Y$ be the tangency points of $\omega_A$ with $AB$ and $AC$. Lines $XY$ and $BC$ intersect in $T$. The tangent from $T$ to $\omega$ different from $BC$ intersects $\omega$ at $K$. The radical axis of $\omega_A$ and $\Omega$ intersects $BC$ in $S$. The tangent from $S$ to $\omega_A$ different from $BC$ intersects $\omega_A$ at $L$. Prove that $A$, $K$ and $L$ are collinear. [i]Proposed by Ana Boiangiu[/i]

2002 Romania Team Selection Test, 3

After elections, every parliament member (PM), has his own absolute rating. When the parliament set up, he enters in a group and gets a relative rating. The relative rating is the ratio of its own absolute rating to the sum of all absolute ratings of the PMs in the group. A PM can move from one group to another only if in his new group his relative rating is greater. In a given day, only one PM can change the group. Show that only a finite number of group moves is possible. [i](A rating is positive real number.)[/i]

2008 South africa National Olympiad, 5

Triangle $ABC$ has orthocentre $H$. The feet of the perpendiculars from $H$ to the internal and external bisectors of $\hat{A}$ are $P$ and $Q$ respectively. Prove that $P$ is on the line that passes through $Q$ and the midpoint of $BC$. (Note: The ortohcentre of a triangle is the point where the three altitudes intersect.)

2008 Canada National Olympiad, 3

Let $ a$, $ b$, $ c$ be positive real numbers for which $ a \plus{} b \plus{} c \equal{} 1$. Prove that \[ {{a\minus{}bc}\over{a\plus{}bc}} \plus{} {{b\minus{}ca}\over{b\plus{}ca}} \plus{} {{c\minus{}ab}\over{c\plus{}ab}} \leq {3 \over 2}.\]

1998 Belarus Team Selection Test, 1

Let $O$ be a point inside an acute angle with the vertex $A$ and $H, N$ be the feet of the perpendiculars drawn from $O$ onto the sides of the angle. Let point $B$ belong to the bisector of the angle, $K$ be the foot of the perpendicular from $B$ onto either side of the angle. Denote by $P,F$ the midpoints of the segments $AK,HN$ respectively. Known that $ON + OH = BK$, prove that $PF$ is perpendicular to $AB$. Ya. Konstantinovski

1940 Moscow Mathematical Olympiad, 059

Consider all positive integers written in a row: $123456789101112131415...$ Find the $206788$-th digit from the left.

2015 Balkan MO Shortlist, G6

Let $AB$ be a diameter of a circle $(\omega)$ with centre $O$. From an arbitrary point $M$ on $AB$ such that $MA < MB$ we draw the circles $(\omega_1)$ and $(\omega_2)$ with diameters $AM$ and $BM$ respectively. Let $CD$ be an exterior common tangent of $(\omega_1), (\omega_2)$ such that $C$ belongs to $(\omega_1)$ and $D$ belongs to $(\omega_2)$. The point $E$ is diametrically opposite to $C$ with respect to $(\omega_1)$ and the tangent to $(\omega_1)$ at the point $E$ intersects $(\omega_2)$ at the points $F, G$. If the line of the common chord of the circumcircles of the triangles $CED$ and $CFG$ intersects the circle $(\omega)$ at the points $K, L$ and the circle $(\omega_2)$ at the point $N$ (with $N$ closer to $L$), then prove that $KC = NL$.

1998 Singapore Team Selection Test, 1

The lengths of the sides of a convex hexagon $ ABCDEF$ satisfy $ AB \equal{} BC$, $ CD \equal{} DE$, $ EF \equal{} FA$. Prove that: \[ \frac {BC}{BE} \plus{} \frac {DE}{DA} \plus{} \frac {FA}{FC} \geq \frac {3}{2}. \]