This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2005 Korea - Final Round, 2

Let $(a_{n})_{n=1}^{\infty}$ be a sequence of positive real numbers and let $\alpha_{n}$ be the arithmetic mean of $a_{1},..., a_{n}$ . Prove that for all positive integers $N$ , \[\sum_{n=1}^{N}\alpha_{n}^{2}\leq 4\sum_{n=1}^{N}a_{n}^{2}. \]

2016 Costa Rica - Final Round, A2

The initial number of inhabitants of a city of more than $150$ inhabitants is a perfect square. With an increase of $1000$ inhabitants it becomes a perfect square plus a unit. After from another increase of $1000$ inhabitants it is again a perfect square. Determine the quantity of inhabitants that are initially in the city.

2019 Korea USCM, 7

Tags: analysis , series
For a real number $a$ and an integer $n(\geq 2)$, define $$S_n (a) = n^a \sum_{k=1}^{n-1} \frac{1}{k^{2019} (n-k)^{2019}}$$ Find every value of $a$ s.t. sequence $\{S_n(a)\}_{n\geq 2}$ converges to a positive real.

MathLinks Contest 2nd, 2.1

Tags: inequalities
Given are six reals $a, b, c, x, y, z$ such that $(a + b + c)(x + y + z) = 3$ and $(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) = 4$. Prove that $ax + by + cz \ge 0$.

2012 Today's Calculation Of Integral, 856

On the coordinate plane, find the area of the part enclosed by the curve $C: (a+x)y^2=(a-x)x^2\ (x\geq 0)$ for $a>0$.

2000 Mongolian Mathematical Olympiad, Problem 5

Given a natural number $n$, find the number of quadruples $(x,y,u,v)$ of integers with $1\le x,y,y,v\le n$ satisfy the following inequalities: \begin{align*} &1\le v+x-y\le n,\\ &1\le x+y-u\le n,\\ &1\le u+v-y\le n,\\ &1\le v+x-u\le n. \end{align*}

2000 National Olympiad First Round, 6

Tags:
What is the largest prime $p$ that makes $\sqrt{17p+625}$ an integer? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 67 \qquad\textbf{(C)}\ 101 \qquad\textbf{(D)}\ 151 \qquad\textbf{(E)}\ 211 $

2020 Dutch BxMO TST, 4

Three different points $A,B$ and $C$ lie on a circle with center $M$ so that $| AB | = | BC |$. Point $D$ is inside the circle in such a way that $\vartriangle BCD$ is equilateral. Let $F$ be the second intersection of $AD$ with the circle . Prove that $| F D | = | FM |$.

2024 Serbia JBMO TST, 2

Tags: inequalities
Let $a, b, c$ be positive reals such that $ab+bc+ca=\frac{3}{4}$. Show that $$(a+b+c)^6 \geq (\frac{9} {8})^3(1+(a+b)^2)(1+(b+c)^2)(1+(c+a)^2).$$ When does equality hold?

2020 Online Math Open Problems, 1

Tags:
A circle with radius $r$ has area $505$. Compute the area of a circle with diameter $2r$. [i]Proposed by Luke Robitaille & Yannick Yao[/i]

2014 Vietnam Team Selection Test, 5

Find all polynomials $P(x),Q(x)$ which have integer coefficients and satify the following condtion: For the sequence $(x_n )$ defined by \[x_0=2014,x_{2n+1}=P(x_{2n}),x_{2n}=Q(x_{2n-1}) \quad n\geq 1\] for every positive integer $m$ is a divisor of some non-zero element of $(x_n )$

2016 Macedonia National Olympiad, Problem 2

A magic square is a square with side 3 consisting of 9 unit squares, such that the numbers written in the unit squares (one number in each square) satisfy the following property: the sum of the numbers in each row is equal to the sum of the numbers in each column and is equal to the sum of all the numbers written in any of the two diagonals. A rectangle with sides $m\ge3$ and $n\ge3$ consists of $mn$ unit squares. If in each of those unit squares exactly one number is written, such that any square with side $3$ is a magic square, then find the number of most different numbers that can be written in that rectangle.

1987 Bulgaria National Olympiad, Problem 6

Let $\Delta$ be the set of all triangles inscribed in a given circle, with angles whose measures are integer numbers of degrees different than $45^\circ,90^\circ$ and $135^\circ$. For each triangle $T\in\Delta$, $f(T)$ denotes the triangle with vertices at the second intersection points of the altitudes of $T$ with the circle. (a) Prove that there exists a natural number $n$ such that for every triangle $T\in\Delta$, among the triangles $T,f(T),\ldots,f^n(T)$ (where $f^0(T)=T$ and $f^k(T)=f(f^{k-1}(T))$) at least two are equal. (b) Find the smallest $n$ with the property from (a).

2004 AIME Problems, 3

A convex polyhedron $P$ has 26 vertices, 60 edges, and 36 faces, 24 of which are triangular, and 12 of which are quadrilaterals. A space diagonal is a line segment connecting two non-adjacent vertices that do not belong to the same face. How many space diagonals does $P$ have?

1968 Putnam, A5

Tags: polynomial
Find the smallest possible $\alpha\in \mathbb{R}$ such that if $P(x)=ax^2+bx+c$ satisfies $|P(x)|\leq1 $ for $x\in [0,1]$ , then we also have $|P'(0)|\leq \alpha$.

1999 All-Russian Olympiad Regional Round, 8.7

The box contains a complete set of dominoes. Two players take turns choosing one dice from the box and placing them on the table, applying them to the already laid out chain on either of the two sides according to the rules of domino. The one who cannot make his next move loses. Who will win if they both played correctly?

1982 All Soviet Union Mathematical Olympiad, 347

Can you find three polynomials $P,Q,R$ of three variables $x,y,z$, providing the condition: a)$P(x-y+z)^3 + Q(y-z-1)^3 +R(z-2x+1)^3 = 1$ b)$P(x-y+z)^3 + Q(y-z-1)^3 +R(z-x+1)^3 = 1$ for all $x,y,z$?

2019 Tournament Of Towns, 2

Let $ABC$ be an acute triangle. Suppose the points $A',B',C'$ lie on its sides $BC,AC,AB$ respectively and the segments $AA',BB',CC'$ intersect in a common point $P$ inside the triangle. For each of those segments let us consider the circle such that the segment is its diameter, and the chord of this circle that contains the point $P$ and is perpendicular to this diameter. All three these chords occurred to have the same length. Prove that $P$ is the orthocenter of the triangle $ABC$. (Grigory Galperin)

Kvant 2021, M2660

4 tokens are placed in the plane. If the tokens are now at the vertices of a convex quadrilateral $P$, then the following move could be performed: choose one of the tokens and shift it in the direction perpendicular to the diagonal of $P$ not containing this token; while shifting tokens it is prohibited to get three collinear tokens. Suppose that initially tokens were at the vertices of a rectangle $\Pi$, and after a number of moves tokens were at the vertices of one another rectangle $\Pi'$ such that $\Pi'$ is similar to $\Pi$ but not equal to $\Pi $. Prove that $\Pi$ is a square.

2013 Dutch BxMO/EGMO TST, 5

Let $ABCD$ be a cyclic quadrilateral for which $|AD| =|BD|$. Let $M$ be the intersection of $AC$ and $BD$. Let $I$ be the incentre of $\triangle BCM$. Let $N$ be the second intersection pointof $AC$ and the circumscribed circle of $\triangle BMI$. Prove that $|AN| \cdot |NC| = |CD | \cdot |BN|$.

2011 Albania Team Selection Test, 5

The sweeties shop called "Olympiad" sells boxes of $6,9$ or $20$ chocolates. Groups of students from a school that is near the shop collect money to buy a chocolate for each student; to make this they buy a box and than give to everybody a chocolate. Like this students can create groups of $15=6+9$ students, $38=2*9+20$ students, etc. The seller has promised to the students that he can satisfy any group of students, and if he will need to open a new box of chocolate for any group (like groups of $4,7$ or $10$ students) than he will give all the chocolates for free to this group. Can there be constructed the biggest group that profits free chocolates, and if so, how many students are there in this group?

2021 Girls in Math at Yale, R1

Tags: college
1. If $5x+3y-z=4$, $x=y$, and $z=4$, find $x+y+z$. 2. How many ways are there to pick three distinct vertices of a regular hexagon such that the triangle with those three points as its vertices shares exactly one side with the hexagon? 3. Sirena picks five distinct positive primes, $p_1 < p_2 < p_3 < p_4 < p_5$, and finds that they sum to $192$. If the product $p_1p_2p_3p_4p_5$ is as large as possible, what is $p_1 - p_2 + p_3 - p_4 + p_5$?

2022 Romania National Olympiad, P1

Tags: algebra
Let $a,b$ be positive integers. Prove that the equation $x^2+(a+b)^2x+4ab=1$ has rational solutions if and only if $a=b$. [i]Mihai Opincariu[/i]

2016 HMNT, 4

Tags: hmmt
A rectangular pool table has vertices at $(0, 0) (12, 0) (0, 10),$ and $(12, 10)$. There are pockets only in the four corners. A ball is hit from $(0, 0)$ along the line $y = x$ and bounces off several walls before eventually entering a pocket. Find the number of walls that the ball bounces off of before entering a pocket.

1983 IMO Shortlist, 21

Find the greatest integer less than or equal to $\sum_{k=1}^{2^{1983}} k^{\frac{1}{1983} -1}.$