Found problems: 85335
India EGMO 2023 TST, 3
Let $N \geqslant 3$ be an integer. In the country of Sibyl, there are $N^2$ towns arranged as the vertices of an $N \times N$ grid, with each pair of towns corresponding to an adjacent pair of vertices on the grid connected by a road. Several automated drones are given the instruction to traverse a rectangular path starting and ending at the same town, following the roads of the country. It turned out that each road was traversed at least once by some drone. Determine the minimum number of drones that must be operating.
[i]Proposed by Sutanay Bhattacharya and Anant Mudgal[/i]
1997 Romania National Olympiad, 3
Suppose that $a,b,c,d\in\mathbb{R}$ and $f(x)=ax^3+bx^2+cx+d$ such that $f(2)+f(5)<7<f(3)+f(4)$. Prove that there exists $u,v\in\mathbb{R}$ such that $u+v=7 , f(u)+f(v)=7$
2012 Princeton University Math Competition, A7 / B8
Let $a_n$ be a sequence such that $a_1 = 1$ and $a_{n+1} = \lfloor a_n +\sqrt{a_n} +\frac12 \rfloor $, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. What are the last four digits of $a_{2012}$?
2019 Romania National Olympiad, 2
If $a,b,c\in(0,\infty)$ such that $a+b+c=3$, then
$$\frac{a}{3a+bc+12}+\frac{b}{3b+ca+12}+\frac{c}{3c+ab+12}\le \frac{3}{16}$$
2022 MIG, 18
Two equilateral triangles are glued, and their opposite vertices are connected. If the larger equilateral triangle has an area of $225$ and the smaller equilateral triangle has an area of $100$, what is the area of the shaded region?
[asy]
size(4cm);
draw((0,0)--(3,0)--(3/2,3sqrt(3)/2)--(0,0));
draw((0,0)--(2,0)--(1,-sqrt(3))--(0,0));
draw((1,-sqrt(3))--(3/2,3sqrt(3)/2));
filldraw((0,0)--(6/5,0)--(3/2,3sqrt(3)/2)--cycle, gray);
[/asy]
$\textbf{(A) }60\qquad\textbf{(B) }90\qquad\textbf{(C) }96\qquad\textbf{(D) }108\qquad\textbf{(E) }120$
2014 Balkan MO Shortlist, G7
Let $I$ be the incenter of $\triangle ABC$ and let $H_a$, $H_b$, and $H_c$ be the orthocenters of $\triangle BIC$ , $\triangle CIA$, and $\triangle AIB$, respectively. The lines $H_aH_b$ meets $AB$ at $X$ and the line $H_aH_c$ meets $AC$ at $Y$. If the midpoint $T$ of the median $AM$ of $\triangle ABC$ lies on $XY$, prove that the line $H_aT$ is perpendicular to $BC$
2014 Contests, 1
In a plane, 2014 lines are distributed in 3 groups. in every group all the lines are parallel between themselves. What is the maximum number of triangles that can be formed, such that every side of such triangle lie on one of the lines?
2020 BMT Fall, 19
Alice is standing on the circumference of a large circular room of radius $10$. There is a circular pillar in the center of the room of radius $5$ that blocks Alice’s view. The total area in the room Alice can see can be expressed in the form $\frac{m\pi}{n} +p\sqrt{q}$, where $m$ and $n$ are relatively prime positive integers and $p$ and $q$ are integers such that $q$ is square-free. Compute $m + n + p + q$. (Note that the pillar is not included in the total area of the room.)
[img]https://cdn.artofproblemsolving.com/attachments/5/1/26e8aa6d12d9dd85bd5b284b6176870c7d11b1.png[/img]
2009 SDMO (Middle School), 1
A farmer buys a batch of trees, which he wishes to plant in a square grid. For example, if he had $25$ trees, then he could plant them as shown below.
[asy]
size(3cm,0);
dot((0,0));
dot((0,1));
dot((0,2));
dot((0,3));
dot((0,4));
dot((1,0));
dot((1,1));
dot((1,2));
dot((1,3));
dot((1,4));
dot((2,0));
dot((2,1));
dot((2,2));
dot((2,3));
dot((2,4));
dot((3,0));
dot((3,1));
dot((3,2));
dot((3,3));
dot((3,4));
dot((4,0));
dot((4,1));
dot((4,2));
dot((4,3));
dot((4,4));
[/asy]
However, the farmer finds that he cannot plant his trees in a square grid. If he had $20$ more trees, or if he had $39$ fewer trees, then he could plant his trees in a square grid. How many trees did the farmer buy?
1998 IMC, 1
Let $V$ be a 10-dimensional real vector space and $U_1,U_2$ two linear subspaces such that $U_1 \subseteq U_2, \dim U_1 =3, \dim U_2=6$. Let $\varepsilon$ be the set of all linear maps $T: V\rightarrow V$ which have $T(U_1)\subseteq U_1, T(U_2)\subseteq U_2$. Calculate the dimension of $\varepsilon$. (again, all as real vector spaces)
1974 Swedish Mathematical Competition, 2
Show that
\[
1 - \frac{1}{k} \leq n\left(\sqrt[n]{k}-1\right) \leq k - 1
\]
for all positive integers $n$ and positive reals $k$.
2012 Moldova Team Selection Test, 11
Let $ABC$ be an acute triangle, $ M $ the foot of the height from $A$ and point $P\in(MA)$ different from the orthocenter of $ABC.$ Prove that the feet of perpendiculars from $ M $ to $AC, AB, BP$ and $CP$ lie on a circle.
2016 Romania National Olympiad, 1
The vertices of a prism are colored using two colors, so that each lateral edge has its vertices differently colored. Consider all the segments that join vertices of the prism and are not lateral edges. Prove that the number of such segments with endpoints differently colored is equal to the number of such segments with endpoints of the same color.
Kyiv City MO 1984-93 - geometry, 1990.7.3
Given a triangle with sides $a, b, c$ that satisfy $\frac{a}{b+c}=\frac{c}{a+b}$. Determine the angles of this triangle, if you know that one of them is equal to $120^0$.
1997 ITAMO, 5
Let $X$ be the set of natural numbers whose all digits in the decimal representation are different. For $n \in N$, denote by $A_n$ the set of numbers whose digits are a permutation of the digits of $n$, and $d_n$ be the greatest common divisor of the numbers in $A_n$. (For example, $A_{1120} =\{112,121,...,2101,2110\}$, so $d_{1120} = 1$.)
Find the maximum possible value of $d_n$.
2015 Princeton University Math Competition, A1/B1
A word is an ordered, non-empty sequence of letters, such as $word$ or $wrod$. How many distinct $3$-letter words can be made from a subset of the letters $c, o, m, b, o$, where each letter in the list is used no more than the number of times it appears?
2006 Baltic Way, 17
Determine all positive integers $n$ such that $3^{n}+1$ is divisible by $n^{2}$.
2019 Stanford Mathematics Tournament, 10
Let $ABC$ be an acute triangle with $BC = 48$. Let $M$ be the midpoint of $BC$, and let $D$ and $E$ be the feet of the altitudes drawn from $B$ and $C$ to $AC$ and $AB$ respectively. Let $P$ be the intersection between the line through $A$ parallel to $BC$ and line $DE$. If $AP = 10$, compute the length of $PM$,
2024 Junior Balkan Team Selection Tests - Moldova, 9
Consider the parallelograms $ABCD$ and $AXYZ$, such that $X \in $[$BC$] and $D \in $[$YZ$]. Prove that the areas of the parallelograms are equal.
2021 IMO Shortlist, G8
Let $ABC$ be a triangle with circumcircle $\omega$ and let $\Omega_A$ be the $A$-excircle. Let $X$ and $Y$ be the intersection points of $\omega$ and $\Omega_A$. Let $P$ and $Q$ be the projections of $A$ onto the tangent lines to $\Omega_A$ at $X$ and $Y$ respectively. The tangent line at $P$ to the circumcircle of the triangle $APX$ intersects the tangent line at $Q$ to the circumcircle of the triangle $AQY$ at a point $R$. Prove that $\overline{AR} \perp \overline{BC}$.
1999 Poland - Second Round, 2
A cube of edge $2$ with one of the corner unit cubes removed is called a [i]piece[/i].
Prove that if a cube $T$ of edge $2^n$ is divided into $2^{3n}$ unit cubes and one of the unit cubes is removed, then the rest can be cut into [i]pieces[/i].
1997 Canadian Open Math Challenge, 12
Find all real values of x, y, and z such that
$$x - \sqrt{yz} = 42$$
$$y - \sqrt{xz}=6$$
$$z-\sqrt{xy}=30$$
2005 AMC 10, 17
Suppose that $ 4^a \equal{} 5$, $ 5^b \equal{} 6$, $ 6^c \equal{} 7$, and $ 7^d \equal{} 8$. What is $ a\cdot b\cdot c\cdot d$?
$ \textbf{(A)}\ 1\qquad
\textbf{(B)}\ \frac{3}{2}\qquad
\textbf{(C)}\ 2\qquad
\textbf{(D)}\ \frac{5}{2}\qquad
\textbf{(E)}\ 3$
1986 Traian Lălescu, 2.3
Let $ f:[0,2]\longrightarrow \mathbb{R} $ a differentiable function having a continuous derivative and satisfying $ f(0)=f(2)=1 $ and $ |f’|\le 1. $ Show that
$$ \left| \int_0^2 f(t) dt\right| >1. $$
2013 NIMO Problems, 6
For each positive integer $n$, let $H_n = \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$. If \[ \sum_{n=4}^{\infty} \frac{1}{nH_nH_{n-1}} = \frac{M}{N} \] for relatively prime positive integers $M$ and $N$, compute $100M+N$.
[i]Based on a proposal by ssilwa[/i]