This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1911 Eotvos Mathematical Competition, 3

Prove that $3^n + 1$ is not divisible by $2^n$ for any integer $n > 1$.

2004 AMC 8, 7

Tags:
An athlete's target heart rate, in beats per minute, is $80\%$ of the theoretical maximum heart rate. The maximum heart rate is found by subtracting the athlete's age, in years, from $220$. To the nearest whole number, what is the target heart rate of an athlete who is $26$ years old? $\textbf{(A)}\ 134\qquad \textbf{(B)}\ 155 \qquad \textbf{(C)}\ 176\qquad \textbf{(D)}\ 194\qquad \textbf{(E)}\ 243$

2006 Sharygin Geometry Olympiad, 19

Through the midpoints of the sides of the triangle $T$, straight lines are drawn perpendicular to the bisectors of the opposite angles of the triangle. These lines formed a triangle $T_1$. Prove that the center of the circle circumscribed about $T_1$ is in the midpoint of the segment formed by the center of the inscribed circle and the intersection point of the heights of triangle $T$.

2016 Saudi Arabia Pre-TST, 1.1

Let $x, y, z$ be positive real numbers satisfy the condition $x^2 +y^2 + z^2 = 2(x y + yz + z x)$. Prove that $x + y + z + \frac{1}{2x yz} \ge 4$

2024 Belarus Team Selection Test, 2.1

A sequence $\{y_i\}$ is given, where $y_0=-\frac{1}{4},y_1=0$. For every positive integer $n$ the following equality holds: $$y_{n-1}+y_{n+1}=4y_n+1$$ Prove that for every positive integer $n$ the number $2y_{2n}+\frac{3}{2}$ a) is a positive integer b) is a square of a positive integer [i]D. Zmiaikou[/i]

PEN A Problems, 50

Show that every integer $k>1$ has a multiple less than $k^4$ whose decimal expansion has at most four distinct digits.

2025 Harvard-MIT Mathematics Tournament, 5

In an $11 \times 11$ grid of cells, each pair of edge-adjacent cells is connected by a door. Karthik wants to walk a path in this grid. He can start in any cell, but he must end in the same cell he started in, and he cannot go through any door more than once (not even in opposite directions). Compute the maximum number of doors he can go through in such a path.

2022 Peru MO (ONEM), 2

Tags: geometry , area
Let $D$ be the midpoint of the side $BC$ of a triangle $ABC$ and let $G$ be the point of the segment $AD$ such that $AG = 2GD$. Let $E$ and $F$ be points on the sides $AB$ and $AC$, respectively, such that$ G$ lies on the segment $EF$. Let $M$ and $N$ be points of the segments $AE$ and $AF$, respectively, such that $ME = EB$ and $NF = FC$. a) Prove that the area of the quadrilateral $BMNC$ is equal to four times the area of the triangle $DEF$. b) Prove that the quadrilaterals $MNFE$ and $AMDN$ have the same area.

2018 Puerto Rico Team Selection Test, 3

Let $M$ be the point of intersection of diagonals $AC$ and $BD$ of the convex quadrilateral $ABCD$. Let $K$ be the point of intersection of the extension of side $AB$ (beyond$A$) with the bisector of the angle $ACD$. Let $L$ be the intersection of $KC$ and $BD$. If $MA \cdot CD = MB \cdot LD$, prove that the angle $BKC$ is equal to the angle $CDB$.

Maryland University HSMC part II, 2011

[b]p1.[/b] You are given three buckets with a capacity to hold $8$, $5$, and $3$ quarts of water, respectively. Initially, the first bucket is filled with $8$ quarts of water, while the remaining two buckets are empty. There are no markings on the buckets, so you are only allowed to empty a bucket into another one or to fill a bucket to its capacity using the water from one of the other buckets. (a) Describe a procedure by which we can obtain exactly $6$ quarts of water in the first bucket. (b) Describe a procedure by which we can obtain exactly $4$ quarts of water in the first bucket. [b]p2.[/b] A point in the plane is called a lattice point if its coordinates are both integers. A triangle whose vertices are all lattice points is called a lattice triangle. In each case below, give explicitly the coordinates of the vertices of a lattice triangle $T$ that satisfies the stated properties. (a) The area of $T$ is $1/2$ and two sides of $T$ have length greater than $2011$. (b) The area of $T$ is $1/2$ and the three sides of $T$ each have length greater than $2011$. [b]p3.[/b] Alice and Bob play several rounds of a game. In the $n$-th round, where $n = 1, 2, 3, ...$, the loser pays the winner $2^{n-1}$ dollars (there are no ties). After $40$ rounds, Alice has a profit of $\$2011$ (and Bob has lost $\$2011$). How many rounds of the game did Alice win, and which rounds were they? Justify your answer. [b]p4.[/b] Each student in a school is assigned a $15$-digit ID number consisting of a string of $3$’s and $7$’s. Whenever $x$ and $y$ are two distinct ID numbers, then $x$ and $y$ differ in at least three entries. Show that the number of students in the school is less than or equal to $2048$. [b]p5.[/b] A triangle $ABC$ has the following property: there is a point $P$ in the plane of $ABC$ such that the triangles $PAB$, $PBC$ and $PCA$ all have the same perimeter and the same area. Prove that: (a) If $P$ is not inside the triangle $ABC$, then $ABC$ is a right-angled triangle. (b) If $P$ is inside the triangle $ABC$, then $ABC$ is an equilateral triangle. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 IMO, 4

Let $ABCDE$ be a convex pentagon such that $BC=DE$. Assume that there is a point $T$ inside $ABCDE$ with $TB=TD,TC=TE$ and $\angle ABT = \angle TEA$. Let line $AB$ intersect lines $CD$ and $CT$ at points $P$ and $Q$, respectively. Assume that the points $P,B,A,Q$ occur on their line in that order. Let line $AE$ intersect $CD$ and $DT$ at points $R$ and $S$, respectively. Assume that the points $R,E,A,S$ occur on their line in that order. Prove that the points $P,S,Q,R$ lie on a circle.

2023 Flanders Math Olympiad, 2

In the plane, the point $M$ is the midpoint of a line segment $[AB]$ and $\ell$ is an arbitrary line that has no has a common point with the line segment $[AB]$ (and is also not perpendicular to $[AB]$). The points $X$ and $Y$ are the perpendicular projections of $A$ and $B$ onto $\ell$, respectively. Show that the circumscribed circles of triangle $\vartriangle AMX$ and triangle $\vartriangle BMY$ have the same radius.

2008 Harvard-MIT Mathematics Tournament, 2

Find the smallest positive integer $ n$ such that $ 107n$ has the same last two digits as $ n$.

MathLinks Contest 5th, 5.3

A student wants to make his birthday party special this year. He wants to organize it such that among any groups of $4$ persons at the party there is one that is friends with exactly another person in the group. Find the largest number of his friends that he can possibly invite at the party.

2013 Moldova Team Selection Test, 2

We call a triangle $\triangle ABC$, $Q$-angled if $\tan\angle A,\tan\angle B,\tan\angle C \in \mathbb{Q}$, where $\angle A,\angle B ,\angle C$ are the interior angles of the triangle $\triangle ABC$. $a)$ Prove that $Q$-angled triangles exist; $b)$ Let triangle $\triangle ABC$ be $Q$-angled. Prove that for any non-negative integer $n$, numbers of the form $E_n=\sin^n\angle A \sin^n\angle B \sin^n\angle C + \cos^n\angle A\cos^n\angle B\cos^n\angle C$ are rational.

2010 Malaysia National Olympiad, 4

Tags: geometry
A square $ABCD$ has side length $ 1$. A circle passes through the vertices of the square. Let $P, Q, R, S$ be the midpoints of the arcs which are symmetrical to the arcs $AB$, $BC$, $CD$, $DA$ when reflected on sides $AB$, $B$C, $CD$, $DA$, respectively. The area of square $PQRS$ is $a+b\sqrt2$, where $a$ and $ b$ are integers. Find the value of $a+b$. [img]https://cdn.artofproblemsolving.com/attachments/4/3/fc9e1bd71b26cfd9ff076db7aa0a396ae64e72.png[/img]

Denmark (Mohr) - geometry, 2014.3

The points $C$ and $D$ lie on a halfline from the midpoint $M$ of a segment $AB$, so that $|AC| = |BD|$. Prove that the angles $u = \angle ACM$ and $v = \angle BDM$ are equal. [img]https://1.bp.blogspot.com/-tQEJ1VBCa8U/XzT7IhwlZHI/AAAAAAAAMVI/xpRdlj5Rl64VUt_tCRsQ1UxIsv_SGrMlACLcBGAsYHQ/s0/2014%2BMohr%2Bp3.png[/img]

1992 IMTS, 2

Tags: algebra , search
Prove that if $a,b,c$ are positive integers such that $c^2 = a^2+b^2$, then both $c^2+ab$ and $c^2-ab$ are also expressible as the sums of squares of two positive integers.

2022 ISI Entrance Examination, 7

Tags: polynomial , limit
Let $$P(x)=1+2 x+7 x^{2}+13 x^{3}~,\qquad x \in \mathbb{R} .$$ Calculate for all $x \in \mathbb{R},$ $$\lim _{n \rightarrow \infty}\left(P\left(\frac{x}{n}\right)\right)^{n}$$

2010 Sharygin Geometry Olympiad, 3

All sides of a convex polygon were decreased in such a way that they formed a new convex polygon. Is it possible that all diagonals were increased?

2024 Indonesia MO, 8

Let $n \ge 2$ be a positive integer. Suppose $a_1, a_2, \dots, a_n$ are distinct integers. For $k = 1, 2, \dots, n$, let \[ s_k := \prod_{\substack{i \not= k, \\ 1 \le i \le n}} |a_k - a_i|, \] i.e. $s_k$ is the product of all terms of the form $|a_k - a_i|$, where $i \in \{ 1, 2, \dots, n \}$ and $i \not= k$. Find the largest positive integer $M$ such that $M$ divides the least common multiple of $s_1, s_2, \dots, s_n$ for any choices of $a_1, a_2, \dots, a_n$.

Kvant 2019, M2560

A dog has infinitely many pieces of meat, but on each piece of meat there is a fly. At each move, the dog does the following: [list=1] [*] He eats a piece of meat together with all flies lying on it; [*] He moves a fly from a piece of meat to another. [/list] The dog doesn't want to eat more than one milion flies. Prove that he cannot ensure that each piece of meat is eaten at some point. [i]Proposed by I. Mitrofanov[/i]

2015 Rioplatense Mathematical Olympiad, Level 3, 5

For a positive integer number $n$ we denote $d(n)$ as the greatest common divisor of the binomial coefficients $\dbinom{n+1}{n} , \dbinom{n+2}{n} ,..., \dbinom{2n}{n}$. Find all possible values of $d(n)$

2010 AMC 10, 7

A triangle has side lengths 10, 10, and 12. A rectangle has width 4 and area equal to the area of the triangle. What is the perimeter of this rectangle? $ \textbf{(A)}\ 16\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 28\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 36$

2018 Spain Mathematical Olympiad, 5

Let $a, b$ be coprime positive integers. A positive integer $n$ is said to be [i]weak[/i] if there do not exist any nonnegative integers $x, y$ such that $ax+by=n$. Prove that if $n$ is a [i]weak[/i] integer and $n < \frac{ab}{6}$, then there exists an integer $k \geq 2$ such that $kn$ is [i]weak[/i].