This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2015 IFYM, Sozopol, 5

Let $p>3$ be a prime number. The natural numbers $a,b,c, d$ are such that $a+b+c+d$ and $a^3+b^3+c^3+d^3$ are divisible by $p$. Prove that for all odd $n$, $a^n+b^n+c^n+d^n$ is divisible by $p$.

2008 USAMO, 3

Let $n$ be a positive integer. Denote by $S_n$ the set of points $(x, y)$ with integer coordinates such that \[ \left\lvert x\right\rvert + \left\lvert y + \frac{1}{2} \right\rvert < n. \] A path is a sequence of distinct points $(x_1 , y_1), (x_2, y_2), \ldots, (x_\ell, y_\ell)$ in $S_n$ such that, for $i = 2, \ldots, \ell$, the distance between $(x_i , y_i)$ and $(x_{i-1} , y_{i-1} )$ is $1$ (in other words, the points $(x_i, y_i)$ and $(x_{i-1} , y_{i-1} )$ are neighbors in the lattice of points with integer coordinates). Prove that the points in $S_n$ cannot be partitioned into fewer than $n$ paths (a partition of $S_n$ into $m$ paths is a set $\mathcal{P}$ of $m$ nonempty paths such that each point in $S_n$ appears in exactly one of the $m$ paths in $\mathcal{P}$).

2006 India IMO Training Camp, 2

Let $p$ be a prime number and let $X$ be a finite set containing at least $p$ elements. A collection of pairwise mutually disjoint $p$-element subsets of $X$ is called a $p$-family. (In particular, the empty collection is a $p$-family.) Let $A$(respectively, $B$) denote the number of $p$-families having an even (respectively, odd) number of $p$-element subsets of $X$. Prove that $A$ and $B$ differ by a multiple of $p$.

2010 Today's Calculation Of Integral, 527

Let $ n,\ m$ be positive integers and $ \alpha ,\ \beta$ be real numbers. Prove the following equations. (1) $ \int_{\alpha}^{\beta} (x \minus{} \alpha)(x \minus{} \beta)\ dx \equal{} \minus{} \frac 16 (\beta \minus{} \alpha)^3$ (2) $ \int_{\alpha}^{\beta} (x \minus{} \alpha)^n(x \minus{} \beta)\ dx \equal{} \minus{} \frac {n!}{(n \plus{} 2)!}(\beta \minus{} \alpha)^{n \plus{} 2}$ (3) $ \int_{\alpha}^{\beta} (x \minus{} \alpha)^n(x \minus{} \beta)^mdx \equal{} ( \minus{} 1)^{m}\frac {n!m!}{(n \plus{} m \plus{} 1)!}(\beta \minus{} \alpha)^{n \plus{} m \plus{} 1}$

2004 Spain Mathematical Olympiad, Problem 5

Demonstrate that the condition necessary so that, in triangle ${ABC}$, the median from ${B}$ is divided into three equal parts by the inscribed circumference of a circle is: ${A/5 = B/10 = C/13}$.

1974 Bundeswettbewerb Mathematik, 2

There are $30$ apparently equal balls, $15$ of which have the weight $a$ and the remaining $15$ have the weight $b$ with $a \ne b$. The balls are to be partitioned into two groups of $15$, according to their weight. An assistant partitioned them into two groups, and we wish to check if this partition is correct. How can we check that with as few weighings as possible?

1995 Canada National Olympiad, 1

Tags: algebra
Let $f(x)=\frac{9^x}{9^x + 3}$. Evaluate $\sum_{i=1}^{1995}{f\left(\frac{i}{1996}\right)}$.

2006 Princeton University Math Competition, 2

Tags: geometry
$ABC$ is an equilateral triangle with side length $ 1$. $BCDE$ is a square. Some point $F$ is equidistant from $A, D$, and $E$. Find the length of $AF$. [img]https://cdn.artofproblemsolving.com/attachments/2/4/194318955f7ed5fed1c58633cb29c33011371a.jpg[/img]

Swiss NMO - geometry, 2015.4

Given a circle $k$ and two points $A$ and $B$ outside the circle. Specify how to can construct a circle with a compass and ruler, so that $A$ and $B$ lie on that circle and that circle is tangent to $k$.

2023 USAJMO, 6

Tags: geometry
Isosceles triangle $ABC$, with $AB=AC$, is inscribed in circle $\omega$. Let $D$ be an arbitrary point inside $BC$ such that $BD\neq DC$. Ray $AD$ intersects $\omega$ again at $E$ (other than $A$). Point $F$ (other than $E$) is chosen on $\omega$ such that $\angle DFE = 90^\circ$. Line $FE$ intersects rays $AB$ and $AC$ at points $X$ and $Y$, respectively. Prove that $\angle XDE = \angle EDY$. [i]Proposed by Anton Trygub[/i]

2011 Tokio University Entry Examination, 4

Take a point $P\left(\frac 12,\ \frac 14\right)$ on the coordinate plane. Let two points $Q(\alpha ,\ \alpha ^ 2),\ R(\beta ,\ \beta ^2)$ move in such a way that 3 points $P,\ Q,\ R$ form an isosceles triangle with the base $QR$, find the locus of the barycenter $G(X,\ Y)$ of $\triangle{PQR}$. [i]2011 Tokyo University entrance exam[/i]

2016 Bosnia And Herzegovina - Regional Olympiad, 2

Let $ABC$ be an isosceles triangle such that $\angle BAC = 100^{\circ}$. Let $D$ be an intersection point of angle bisector of $\angle ABC$ and side $AC$, prove that $AD+DB=BC$

2011 Indonesia TST, 3

Let $\Gamma$ is a circle with diameter $AB$. Let $\ell$ be the tangent of $\Gamma$ at $A$, and $m$ be the tangent of $\Gamma$ through $B$. Let $C$ be a point on $\ell$, $C \ne A$, and let $q_1$ and $q_2$ be two lines that passes through $C$. If $q_i$ cuts $\Gamma$ at $D_i$ and $E_i$ ($D_i$ is located between $C$ and $E_i$) for $i = 1, 2$. The lines $AD_1, AD_2, AE_1, AE_2$ intersects $m$ at $M_1, M_2, N_1, N_2$ respectively. Prove that $M_1M_2 = N_1N_2$.

2002 AIME Problems, 11

Two distinct, real, infinite geometric series each have a sum of $1$ and have the same second term. The third term of one of the series is $1/8,$ and the second term of both series can be written in the form $\frac{\sqrt{m}-n}{p},$ where $m,$ $n,$ and $p$ are positive integers and $m$ is not divisible by the square of any prime. Find $100m+10n+p.$

1976 All Soviet Union Mathematical Olympiad, 224

Can you mark the cube's vertices with the three-digit binary numbers in such a way, that the numbers at all the possible couples of neighbouring vertices differ in at least two digits?

2006 Belarusian National Olympiad, 1

Let $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ be unit vectors in $R^3$. Prove that $$\sqrt{1-\overrightarrow{a}\cdot\overrightarrow{b}}\le \sqrt{1-\overrightarrow{a}\cdot\overrightarrow{c}}+\sqrt{1-\overrightarrow{c}\cdot\overrightarrow{b}}$$ (A.Mirotin)

2013 AMC 12/AHSME, 19

In $ \bigtriangleup ABC $, $ AB = 86 $, and $ AC = 97 $. A circle with center $ A $ and radius $ AB $ intersects $ \overline{BC} $ at points $ B $ and $ X $. Moreover $ \overline{BX} $ and $ \overline{CX} $ have integer lengths. What is $ BC $? $ \textbf{(A)} \ 11 \qquad \textbf{(B)} \ 28 \qquad \textbf{(C)} \ 33 \qquad \textbf{(D)} \ 61 \qquad \textbf{(E)} \ 72 $

2022 Kyiv City MO Round 1, Problem 4

Tags: inequalities
For any nonnegative reals $x, y$ show the inequality $$x^2y^2 + x^2y + xy^2 \le x^4y + x + y^4$$.

2022 Turkey Team Selection Test, 5

On a circle, 2022 points are chosen such that distance between two adjacent points is always the same. There are $k$ arcs, each having endpoints on chosen points, with different lengths. Arcs do not contain each other. What is the maximum possible number of $k$?

2013 Turkmenistan National Math Olympiad, 2

Tags: algebra , induction
Sequence $x_1 , x_2 , ..., $ with $x_1=20$ ; $x_2=12$ for all $n\geq 1$ such that $x_{n+2}=x_n+x_{n+1}+2\sqrt{x_{n}*x_{n+1}+121} $then prove that $x_{2013}$ is an integer number.

2006 Purple Comet Problems, 5

Tags: ratio
The sizes of the freshmen class and the sophomore class are in the ratio $5:4$. The sizes of the sophomore class and the junior class are in the ratio $7:8$. The sizes of the junior class and the senior class are in the ratio $9:7$. If these four classes together have a total of $2158$ students, how many of the students are freshmen?

2010 Junior Balkan Team Selection Tests - Romania, 4

Let $ABC$ be an isosceles triangle with $AB = AC$ and let $n$ be a natural number, $n>1$. On the side $AB$ we consider the point $M$ such that $n \cdot AM = AB$. On the side $BC$ we consider the points $P_1, P_2, ....., P_ {n-1}$ such that $BP_1 = P_1P_2 = .... = P_ {n-1} C = \frac{1}{n} BC$. Show that: $\angle {MP_1A} + \angle {MP_2A} + .... + \angle {MP_ {n-1} A} = \frac{1} {2} \angle {BAC}$.

2018 Danube Mathematical Competition, 3

Find all the positive integers $n$ with the property: there exists an integer $k > 2$ and the positive rational numbers $a_1, a_2, ..., a_k$ such that $a_1 + a_2 + .. + a_k = a_1a_2 . . . a_k = n$.

Indonesia MO Shortlist - geometry, g2.3

Tags: geometry , ratio
For every triangle $ ABC$, let $ D,E,F$ be a point located on segment $ BC,CA,AB$, respectively. Let $ P$ be the intersection of $ AD$ and $ EF$. Prove that: \[ \frac{AB}{AF}\times DC\plus{}\frac{AC}{AE}\times DB\equal{}\frac{AD}{AP}\times BC\]

1988 National High School Mathematics League, 3

Tags:
$M,N,P$ are three point sets on a plane. $M=\{(x,y)||x|+|y|<1\}$, $N=\{(x,y)|\sqrt{(x-\frac{1}{2})^2+(y+\frac{1}{2})^2}+\sqrt{(x+\frac{1}{2})^2+(y-\frac{1}{2})^2}<2 \sqrt2 \}$, $P=\{(x,y)||x+y|<1,|x|<1,|y|<1\}$.Then $\text{(A)}M\subset P\subset N\qquad\text{(B)}M\subset N\subset P\qquad\text{(C)}P\subset N\subset M\qquad\text{(D)}$ None of$\text{(A)(B)(C)}$