This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 Bundeswettbewerb Mathematik, 4

Prove that for no integer $k \ge 2$, between $10k$ and $10k + 100$ there are more than $23$ prime numbers.

1994 Romania TST for IMO, 2:

Tags: geometry
Let $S_1, S_2,S_3$ be spheres of radii $a, b, c$ respectively whose centers lie on a line $l$. Sphere $S_2$ is externally tangent to $S_1$ and $S_3$, whereas $S_1$ and $S_3$ have no common points. A straight line t touches each of the spheres, Find the sine of the angle between $l$ and $t$

2013 Saudi Arabia GMO TST, 2

For positive real numbers $a, b$ and $c$, prove that $$\frac{a^3}{a^2 + ab + b^2} +\frac{b^3}{b^2 + bc + c^2} +\frac{c^3}{ c^2 + ca + a^2} \ge\frac{ a + b + c}{3}$$

1951 Putnam, B7

Find the volume of the four-dimensional hypersphere $x^2 +y^2 +z^2 +t^2 =r^2$ and the hypervolume of its interior $x^2 +y^2 +z^2 +t^2 <r^2$

2017 AMC 10, 22

The diameter $\overline{AB}$ of a circle of radius $2$ is extended to a point $D$ outside the circle so that $BD=3$. Point $E$ is chosen so that $ED=5$ and the line $ED$ is perpendicular to the line $AD$. Segment $\overline{AE}$ intersects the circle at point $C$ between $A$ and $E$. What is the area of $\triangle ABC$? $\textbf{(A) \ } \frac{120}{37}\qquad \textbf{(B) \ } \frac{140}{39}\qquad \textbf{(C) \ } \frac{145}{39}\qquad \textbf{(D) \ } \frac{140}{37}\qquad \textbf{(E) \ } \frac{120}{31}$

2023 District Olympiad, P4

Let $A{}$ and $B{}$ be $3\times 3{}$ matrices with complex entries, satisfying $A^2=B^2=O_3$. Prove that if $A{}$ and $B{}$ commute, then $AB=O_3$. Is the converse true?

2020 HMNT (HMMO), 9

In the Cartesian plane, a perfectly reflective semicircular room is bounded by the upper half of the unit circle centered at $(0,0)$ and the line segment from $(-1,0)$ to $(1,0)$. David stands at the point $(-1,0)$ and shines a flashlight into the room at an angle of $46^{\circ}$ above the horizontal. How many times does the light beam reflect off the walls before coming back to David at $(-1,0)$ for the first time?

2013 Bosnia Herzegovina Team Selection Test, 4

Find all primes $p,q$ such that $p$ divides $30q-1$ and $q$ divides $30p-1$.

2023 Assam Mathematics Olympiad, 5

Tags:
What is the least possible value of $x^2 + y^2 - x - y - xy$ where $x, y$ are real numbers ?

1952 AMC 12/AHSME, 46

The base of a new rectangle equals the sum of the diagonal and the greater side of a given rectangle, while the altitude of the new rectangle equals the difference of the diagonal and the greater side of the given rectangle. The area of the new rectangle is: $ \textbf{(A)}$ greater than the area of the given rectangle $ \textbf{(B)}$ equal to the area of the given rectangle $ \textbf{(C)}$ equal to the area of a square with its side equal to the smaller side of the given rectangle $ \textbf{(D)}$ equal to the area of a square with its side equal to the greater side of the given rectangle $ \textbf{(E)}$ equal to the area of a rectangle whose dimensions are the diagonal and the shorter side of the given rectangle

2010 CIIM, Problem 1

Given two vectors $v = (v_1,\dots,v_n)$ and $w = (w_1\dots,w_n)$ in $\mathbb{R}^n$, lets define $v*w$ as the matrix in which the element of row $i$ and column $j$ is $v_iw_j$. Supose that $v$ and $w$ are linearly independent. Find the rank of the matrix $v*w - w*v.$

2004 USAMTS Problems, 3

Find, with proof, a polynomial $f(x,y,z)$ in three variables, with integer coefficients, such that for all $a,b,c$ the sign of $f(a,b,c)$ (that is, positive, negative, or zero) is the same as the sign of $a+b\sqrt[3]{2}+c\sqrt[3]{4}$.

2024 Mozambican National MO Selection Test, P1

Tags: counting
A school security guard works from Monday to Saturday from $7:30 am$ to $12:00 pm$ ($7:30$ to $12:00$). He also works the night shift, from Monday to Friday from $6pm$to $10pm$ ($18:00$ to $22:00$) . He receives $75MT$ per hour, up to $40$ hours of work per week. For the remaining hours of weekly work, he receives $95MT$ per hour. So, considering that a month has four weeks, what will be this security guard's monthly salary?

1948 Moscow Mathematical Olympiad, 149

Let $R$ and $r$ be the radii of the circles circumscribed and inscribed, respectively, in a triangle. Prove that $R \ge 2r$, and that $R = 2r$ only for an equilateral triangle.

1981 Austrian-Polish Competition, 1

Find the smallest $n$ for which we can find $15$ distinct elements $a_{1},a_{2},...,a_{15}$ of $\{16,17,...,n\}$ such that $a_{k}$ is a multiple of $k$.

2008 Oral Moscow Geometry Olympiad, 2

The radii $r$ and $R$ of two non-intersecting circles are given. The common internal tangents of these circles are perpendicular. Find the area of the triangle bounded by these tangents, as well as the common external tangents.

Novosibirsk Oral Geo Oly VIII, 2017.4

Tags: perimeter , grid , geometry
On grid paper, mark three nodes so that in the triangle they formed, the sum of the two smallest medians equals to half-perimeter.

2010 Korea Junior Math Olympiad, 5

If reals $x, y, z $ satises $tan x + tan y + tan z = 2$ and $0 < x, y,z < \frac{\pi}{2}.$ Prove that $$sin^2 x + sin^2 y + sin^2 z < 1.$$

1992 AMC 8, 1

Tags:
$\dfrac{10-9+8-7+6-5+4-3+2-1}{1-2+3-4+5-6+7-8+9}=$ $\text{(A)}\ -1 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 10$

2021 Oral Moscow Geometry Olympiad, 3

Circle $(O)$ and its chord $BC$ are given. Point $A$ moves on the major arc $BC$. $AL$ is the angle bisector in a triangle $ABC$. Show that the disctance from the circumcenter of triangle $AOL$ to the line $BC$ does not depend on the position of point $A$.

Russian TST 2018, P3

For any finite sets $X$ and $Y$ of positive integers, denote by $f_X(k)$ the $k^{\text{th}}$ smallest positive integer not in $X$, and let $$X*Y=X\cup \{ f_X(y):y\in Y\}.$$Let $A$ be a set of $a>0$ positive integers and let $B$ be a set of $b>0$ positive integers. Prove that if $A*B=B*A$, then $$\underbrace{A*(A*\cdots (A*(A*A))\cdots )}_{\text{ A appears $b$ times}}=\underbrace{B*(B*\cdots (B*(B*B))\cdots )}_{\text{ B appears $a$ times}}.$$ [i]Proposed by Alex Zhai, United States[/i]

2014 Tajikistan Team Selection Test, 5

There are $12$ delegates in a mathematical conference. It is known that every two delegates share a common friend. Prove that there is a delegate who has at least five friends in that conference. [i]Proposed by Nairy Sedrakyan[/i]

1980 IMO, 2

Define the numbers $a_0, a_1, \ldots, a_n$ in the following way: \[ a_0 = \frac{1}{2}, \quad a_{k+1} = a_k + \frac{a^2_k}{n} \quad (n > 1, k = 0,1, \ldots, n-1). \] Prove that \[ 1 - \frac{1}{n} < a_n < 1.\]

2013 Kyiv Mathematical Festival, 1

There are $24$ apples in $4$ boxes. An optimistic worm is convinced that he can eat no more than half of the apples such that there will be $3$ boxes with equal number of apples. Is it possible that he is wrong?

2005 Junior Balkan MO, 2

Let $ABC$ be an acute-angled triangle inscribed in a circle $k$. It is given that the tangent from $A$ to the circle meets the line $BC$ at point $P$. Let $M$ be the midpoint of the line segment $AP$ and $R$ be the second intersection point of the circle $k$ with the line $BM$. The line $PR$ meets again the circle $k$ at point $S$ different from $R$. Prove that the lines $AP$ and $CS$ are parallel.