Found problems: 85335
2018 Estonia Team Selection Test, 2
Find the greatest number of depicted pieces composed of $4$ unit squares that can be placed without overlapping on an $n \times n$ grid (where n is a positive integer) in such a way that it is possible to move from some corner to the opposite corner via uncovered squares (moving between squares requires a common edge). The shapes can be rotated and reflected.
[img]https://cdn.artofproblemsolving.com/attachments/b/d/f2978a24fdd737edfafa5927a8d2129eb586ee.png[/img]
2019 Durer Math Competition Finals, 11
What is the smallest $N$ for which $\sum_{k=1}^{N} k^{2018}$ is divisible by $2018$?
1994 Flanders Math Olympiad, 1
Let $a,b,c>0$ the sides of a right triangle. Find all real $x$ for which $a^x>b^x+c^x$, with $a$ is the longest side.
2024 Germany Team Selection Test, 1
Determine the maximal length $L$ of a sequence $a_1,\dots,a_L$ of positive integers satisfying both the following properties:
[list=disc]
[*]every term in the sequence is less than or equal to $2^{2023}$, and
[*]there does not exist a consecutive subsequence $a_i,a_{i+1},\dots,a_j$ (where $1\le i\le j\le L$) with a choice of signs $s_i,s_{i+1},\dots,s_j\in\{1,-1\}$ for which \[s_ia_i+s_{i+1}a_{i+1}+\dots+s_ja_j=0.\]
[/list]
1995 Tournament Of Towns, (476) 4
Three different points $A$, $B$ and $C$ are placed in the plane. Construct a line $m$ through $C$ so that the product of the distances from $A$ and $B$ to $m$ has the maximal value. Is $m$ unique for every triple $A$, $B$ and $C$?
(NB Vassiliev)
2012 Oral Moscow Geometry Olympiad, 3
$H$ is the intersection point of the heights $AA'$ and $BB'$ of the acute-angled triangle $ABC$. A straight line, perpendicular to $AB$, intersects these heights at points $D$ and $E$, and side $AB$ at point $P$. Prove that the orthocenter of the triangle $DEH$ lies on segment $CP$.
Kvant 2024, M2819
Ten children have several bags of candies. The children begin to divide these candies among them. They take turns picking their shares of candies from each bag, and leave just after that. The size of the share is determined as follows: the current number of candies in the bag is divided by the number of remaining children (including the one taking the turn). If the remainder is nonzero than the quotient is rounded to the lesser integer. Is it possible that all the children receive different numbers of candies if the total number of bags is:
a) 8 ;
6) 99 ?
Alexey Glebov
2016 Sharygin Geometry Olympiad, P16
Let $BB_1$ and $CC_1$ be altitudes of triangle $ABC$. The tangents to the circumcircle of $AB_1C_1$ at $B_1$ and $C_1$ meet AB and $AC$ at points $M$ and $N$ respectively. Prove that the common point of circles $AMN$ and $AB_1C_1$ distinct from $A$ lies on the Euler line of $ABC$.
ICMC 6, 4
Let $\mathcal{G}$ be a simple graph with $n$ vertices and $m$ edges such that no two cycles share an edge. Prove that $2m < 3n$.
[i]Note[/i]: A [i]simple graph[/i] is a graph with at most one edge between any two vertices and no edges from any vertex to itself. A [i]cycle[/i] is a sequence of distinct vertices $v_1, \dots, v_n$ such that there is an edge between any two consecutive vertices, and between $v_n$ and $v_1$.
[i]Proposed by Ethan Tan[/i]
2000 JBMO ShortLists, 8
Find all positive integers $a,b$ for which $a^4+4b^4$ is a prime number.
2016 Fall CHMMC, 12
For a positive real number $a$, let $C$ be the cube with vertices at $(\pm a, \pm a, \pm a)$ and let $T$ be the tetrahedron with vertices at $(2a,2a,2a),(2a, -2a, -2a),(-2a, 2a, -2a),(-2a, -2a, -2a)$. If the intersection of $T$ and $C$ has volume $ka^3$ for some $k$, find $k$.
2021 JBMO TST - Turkey, 3
In a country, there are $28$ cities and between some cities there are two-way flights. In every city there is exactly one airport and this airport is either small or medium or big. For every route which contains more than two cities, doesn't contain a city twice and ends where it begins; has all types of airports. What is the maximum number of flights in this country?
2018 Flanders Math Olympiad, 1
In the triangle $\vartriangle ABC$ we have $| AB |^3 = | AC |^3 + | BC |^3$. Prove that $\angle C> 60^o$ .
1982 Canada National Olympiad, 3
Let $\mathbb{R}^n$ be the $n$-dimensional Euclidean space. Determine the smallest number $g(n)$ of a points of a set in $\mathbb{R}^n$ such that every point in $\mathbb{R}^n$ is an irrational distance from at least one point in that set.
2018 Polish Junior MO Second Round, 3
Determine all trios of integers $(x, y, z)$ which are solution of system of equations
$\begin{cases} x - yz = 1 \\ xz + y = 2 \end{cases}$
2023 Malaysian IMO Training Camp, 4
Do there exist infinitely many triples of positive integers $(a, b, c)$ such that $a$, $b$, $c$ are pairwise coprime, and $a! + b! + c!$ is divisible by $a^2 + b^2 + c^2$?
[i]Proposed by Anzo Teh Zhao Yang[/i]
2021 AMC 10 Spring, 4
At a math contest, $57$ students are wearing blue shirts, and another $75$ students are wearing yellow shirts. The $132$ students are assigned into $66$ pairs. In exactly $23$ of these pairs, both students are wearing blue shirts. In how many pairs are both students wearing yellow shirts?
$\textbf{(A) }23 \qquad \textbf{(B) }32 \qquad \textbf{(C) }37 \qquad \textbf{(D) }41 \qquad \textbf{(E) }64$
2006 Turkey MO (2nd round), 1
$x_{1},...,x_{n}$ are positive reals such that their sum and their squares' sum are equal to $t$. Prove that $\sum_{i\neq{j}}\frac{x_{i}}{x_{j}}\ge\frac{(n-1)^{2}\cdot{t}}{t-1}$
2009 Switzerland - Final Round, 8
Given is a floor plan composed of $n$ unit squares. Albert and Berta want to cover this floor with tiles, with all tiles having the shape of a $1\times 2$ domino or a $T$-tetromino. Albert only has tiles from one color, while Berta has two-color dominoes and tetrominoes available in four colors. Albert can use this floor plan in $a$ ways to cover tiles, Berta in $ b$ ways. Assuming that $a \ne 0$, determine the ratio $b/a$.
2009 JBMO Shortlist, 4
Determine all prime numbers $p_1, p_2,..., p_{12}, p_{13}, p_1 \le p_2 \le ... \le p_{12} \le p_{13}$, such
that $p_1^2+ p_2^2+ ... + p_{12}^2 = p_{13}^2$ and one of them is equal to $2p_1 + p_9$.
2008 South East Mathematical Olympiad, 4
Let $m, n$ be positive integers $(m, n>=2)$. Given an $n$-element set $A$ of integers $(A=\{a_1,a_2,\cdots ,a_n\})$, for each pair of elements $a_i, a_j(j>i)$, we make a difference by $a_j-a_i$. All these $C^2_n$ differences form an ascending sequence called “derived sequence” of set $A$. Let $\bar{A}$ denote the derived sequence of set $A$. Let $\bar{A}(m)$ denote the number of terms divisible by $m$ in $\bar{A}$ . Prove that $\bar{A}(m)\ge \bar{B}(m)$ where $A=\{a_1,a_2,\cdots ,a_n\}$ and $B=\{1,2,\cdots ,n\}$.
1990 IMO Shortlist, 7
Let $ f(0) \equal{} f(1) \equal{} 0$ and
\[ f(n\plus{}2) \equal{} 4^{n\plus{}2} \cdot f(n\plus{}1) \minus{} 16^{n\plus{}1} \cdot f(n) \plus{} n \cdot 2^{n^2}, \quad n \equal{} 0, 1, 2, \ldots\]
Show that the numbers $ f(1989), f(1990), f(1991)$ are divisible by $ 13.$
2000 Pan African, 1
Let $a$, $b$ and $c$ be real numbers such that $a^2+b^2=c^2$, solve the system:
\[ z^2=x^2+y^2 \]
\[ (z+c)^2=(x+a)^2+(y+b)^2 \]
in real numbers $x, y$ and $z$.
2003 Pan African, 1
Let $N_0=\{0, 1, 2 \cdots \}$. Find all functions: $N_0 \to N_0$ such that:
(1) $f(n) < f(n+1)$, all $n \in N_0$;
(2) $f(2)=2$;
(3) $f(mn)=f(m)f(n)$, all $m, n \in N_0$.
2003 China Team Selection Test, 2
Let $S$ be a finite set. $f$ is a function defined on the subset-group $2^S$ of set $S$. $f$ is called $\textsl{monotonic decreasing}$ if when $X \subseteq Y\subseteq S$, then $f(X) \geq f(Y)$ holds. Prove that: $f(X \cup Y)+f(X \cap Y ) \leq f(X)+ f(Y)$ for $X, Y \subseteq S$ if and only if $g(X)=f(X \cup \{ a \}) - f(X)$ is a $\textsl{monotonic decreasing}$ funnction on the subset-group $2^{S \setminus \{a\}}$ of set $S \setminus \{a\}$ for any $a \in S$.