This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2010 IberoAmerican, 2

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ are perpendicular. Let $O$ be the circumcenter of $ABCD$, $K$ the intersection of the diagonals, $ L\neq O $ the intersection of the circles circumscribed to $OAC$ and $OBD$, and $G$ the intersection of the diagonals of the quadrilateral whose vertices are the midpoints of the sides of $ABCD$. Prove that $O, K, L$ and $G$ are collinear

2020 Romanian Master of Mathematics, 6

For each integer $n \geq 2$, let $F(n)$ denote the greatest prime factor of $n$. A [i]strange pair[/i] is a pair of distinct primes $p$ and $q$ such that there is no integer $n \geq 2$ for which $F(n)F(n+1)=pq$. Prove that there exist infinitely many strange pairs.

2016 Kosovo National Mathematical Olympiad, 4

Tags: equation
Solve equation in real numbers $\log_{2}(4^x+4)=x+\log_{2}(2^{x+1}-3)$

2014 Sharygin Geometry Olympiad, 1

The incircle of a right-angled triangle $ABC$ touches its catheti $AC$ and $BC$ at points $B_1$ and $A_1$, the hypotenuse touches the incircle at point $C_1$. Lines $C_1A_1$ and $C_1B_1$ meet $CA$ and $CB$ respectively at points $B_0$ and $A_0$. Prove that $AB_0 = BA_0$. (J. Zajtseva, D. Shvetsov )

2018 Bosnia And Herzegovina - Regional Olympiad, 4

Let $ABCD$ be a cyclic quadrilateral and let $k_1$ and $k_2$ be circles inscribed in triangles $ABC$ and $ABD$. Prove that external common tangent of those circles (different from $AB$) is parallel with $CD$

1993 Bundeswettbewerb Mathematik, 1

Every positive integer $n>2$ can be written as a sum of distinct positive integers. Let $A(n)$ be the maximal number of summands in such a representation. Find a formula for $A(n).$

2021 CMIMC, 1

Tags: geometry
Given a trapezoid with bases $AB$ and $CD$, there exists a point $E$ on $CD$ such that drawing the segments $AE$ and $BE$ partitions the trapezoid into $3$ similar isosceles triangles, each with long side twice the short side. What is the sum of all possible values of $\frac{CD}{AB}$? [i]Proposed by Adam Bertelli[/i]

2017 CMIMC Computer Science, 7

You are presented with a mystery function $f:\mathbb N^2\to\mathbb N$ which is known to satisfy \[f(x+1,y)>f(x,y)\quad\text{and}\quad f(x,y+1)>f(x,y)\] for all $(x,y)\in\mathbb N^2$. I will tell you the value of $f(x,y)$ for \$1. What's the minimum cost, in dollars, that it takes to compute the $19$th smallest element of $\{f(x,y)\mid(x,y)\in\mathbb N^2\}$? Here, $\mathbb N=\{1,2,3,\dots\}$ denotes the set of positive integers.

2016 Dutch BxMO TST, 3

Let $\vartriangle ABC$ be a right-angled triangle with $\angle A = 90^o$ and circumcircle $\Gamma$. The inscribed circle is tangent to $BC$ in point $D$. Let $E$ be the midpoint of the arc $AB$ of $\Gamma$ not containing $C$ and let $F$ be the midpoint of the arc $AC$ of $\Gamma$ not containing $B$. (a) Prove that $\vartriangle ABC \sim \vartriangle DEF$. (b) Prove that $EF$ goes through the points of tangency of the incircle to $AB$ and $AC$.

1973 Bulgaria National Olympiad, Problem 2

Let the numbers $a_1,a_2,a_3,a_4$ form an arithmetic progression with difference $d\ne0$. Prove that there are no exists geometric progressions $b_1,b_2,b_3,b_4$ and $c_1,c_2,c_3,c_4$ such that: $$a_1=b_1+c_1,a_2=b_2+c_2,a_3=b_3+c_3,a_4=b_4+c_4.$$

1988 Tournament Of Towns, (200) 3

The integers $1 , 2,..., n$ are rearranged in such a way that if the integer $k, 1 \le k\le n$, is not the first term, then one of the integers $k + 1$ or $k-1$ occurs to the left of $k$ . How many arrangements of the integers $1 , 2,..., n$ satisfy this condition? (A. Andjans, Riga)

2024 Sharygin Geometry Olympiad, 10.1

Tags: geo , geometry
The diagonals of a cyclic quadrilateral $ABCD$ meet at point $P$. The bisector of angle $ABD$ meets $AC$ at point $E$, and the bisector of angle $ACD$ meets $BD$ at point $F$. Prove that the lines $AF$ and $DE$ meet on the median of triangle $APD$.

2007 Germany Team Selection Test, 1

We have $ n \geq 2$ lamps $ L_{1}, . . . ,L_{n}$ in a row, each of them being either on or off. Every second we simultaneously modify the state of each lamp as follows: if the lamp $ L_{i}$ and its neighbours (only one neighbour for $ i \equal{} 1$ or $ i \equal{} n$, two neighbours for other $ i$) are in the same state, then $ L_{i}$ is switched off; – otherwise, $ L_{i}$ is switched on. Initially all the lamps are off except the leftmost one which is on. $ (a)$ Prove that there are infinitely many integers $ n$ for which all the lamps will eventually be off. $ (b)$ Prove that there are infinitely many integers $ n$ for which the lamps will never be all off.

2015 Baltic Way, 7

There are $100$ members in a ladies' club.Each lady has had tea (in private) with exactly $56$ of her lady friends.The Board,consisting of the $50$ most distinguished ladies,have all had tea with one another.Prove that the entire club may be split into two groups in such a way that,with in each group,any lady has had tea with any other.

IV Soros Olympiad 1997 - 98 (Russia), 10.6

Is it possible to arrange $n \times n$ in the cells of a square table the numbers $0$,$ 1$ or $2$ so that the sums of the numbers in rows and columns took on all different values from $1$ to $2n$? Consider two cases: a) $n$ is an odd number; b) $n$ is an even number.

2014 Contests, 4

$27$ students in a school take French. $32$ students in a school take Spanish. $5$ students take both courses. How many of these students in total take only $1$ language course?

2017 Saint Petersburg Mathematical Olympiad, 5

Tags: inequalities
Let $x,y,z>0 $ and $\sqrt{xyz}=xy+yz+zx$. Prove that$$x+y+z\leq \frac{1}{3}.$$

1997 Abels Math Contest (Norwegian MO), 3b

Ninety-one students in a school are distributed in three classes. Each student took part in a competition. It is known that among any six students of the same sex some two got the same number of points. Show that here are four students of the same sex who are in the same class and who got the same number of points.

2009 Oral Moscow Geometry Olympiad, 2

Trapezium $ABCD$ and parallelogram $MBDK$ are located so that the sides of the parallelogram are parallel to the diagonals of the trapezoid (see fig.). Prove that the area of the gray part is equal to the sum of the areas of the black part. (Yu. Blinkov) [img]https://cdn.artofproblemsolving.com/attachments/b/9/cfff83b1b85aea16b603995d4f3d327256b60b.png[/img]

1972 Dutch Mathematical Olympiad, 1

Prove that for every $n \in N$, $n > 6$, every equilateral triangle can be divided into $n$ pieces, which are also equilateral triangles.

2013 Bosnia And Herzegovina - Regional Olympiad, 1

If $a$, $b$ and $c$ are nonnegative real numbers such that $a^2+b^2+c^2=1$, prove that $$\frac{1}{2} \leq \frac{a}{1+a^4}+\frac{b}{1+b^4}+\frac{c}{1+c^4} \leq \frac{9\sqrt{3}}{10}$$

2013 Iran Team Selection Test, 15

a) Does there exist a sequence $a_1<a_2<\dots$ of positive integers, such that there is a positive integer $N$ that $\forall m>N$, $a_m$ has exactly $d(m)-1$ divisors among $a_i$s? b) Does there exist a sequence $a_1<a_2<\dots$ of positive integers, such that there is a positive integer $N$ that $\forall m>N$, $a_m$ has exactly $d(m)+1$ divisors among $a_i$s?

2021 Moldova EGMO TST, 2

Tags: geometry
In triangle $ABC$ point $M$ is on side $AB$ such that $AM:AB=3:4$ and point $P$ is on side $BC$ such that $CP:CB=3:8$. Point $N$ is symmetric to $A$ with respect to point $P$. Prove that lines $MN$ and $AC$ are parallel.

2011 JBMO Shortlist, 6

Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB,CD$ such that \[\tfrac{AB}{AE}=\tfrac{CD}{DF}=n\] If $S$ is the area of $AEFD$ show that ${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$

2016 India Regional Mathematical Olympiad, 6

(a). Given any natural number \(N\), prove that there exists a strictly increasing sequence of \(N\) positive integers in harmonic progression. (b). Prove that there cannot exist a strictly increasing infinite sequence of positive integers which is in harmonic progression.