This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

LMT Speed Rounds, 2016.10

Tags:
There are sixteen buildings all on the same side of a street. How many ways can we choose a nonempty subset of the buildings such that there is an odd number of buildings between each pair of buildings in the subset? [i]Proposed by Yiming Zheng

2001 China Team Selection Test, 3

Given $a$, $b$ are positive integers greater than $1$, and for every positive integer $n$, $b^{n}-1$ divides $a^{n}-1$. Define the polynomial $p_{n}(x)$ as follows: $p_0{x}=-1$, $p_{n+1}(x)=b^{n+1}(x-1)p_{n}(bx)-a(b^{n+1}-1)p_{n}(x)$, for $n \ge 0$. Prove that there exist integers $C$ and positive integer $k$ such that $p_{k}(x)=Cx^k$.

1987 Bundeswettbewerb Mathematik, 4

Let $1<k\leq n$ be positive integers and $x_1 , x_2 , \ldots , x_k$ be positive real numbers such that $x_1 \cdot x_2 \cdot \ldots \cdot x_k = x_1 + x_2 + \ldots +x_k.$ a) Show that $x_{1}^{n-1} +x_{2}^{n-1} + \ldots +x_{k}^{n-1} \geq kn.$ b) Find all numbers $k,n$ and $x_1, x_2 ,\ldots , x_k$ for which equality holds.

2016 Iranian Geometry Olympiad, 2

Tags: geometry
In acute-angled triangle $ABC$, altitude of $A$ meets $BC$ at $D$, and $M$ is midpoint of $AC$. Suppose that $X$ is a point such that $\measuredangle AXB = \measuredangle DXM =90^\circ$ (assume that $X$ and $C$ lie on opposite sides of the line $BM$). Show that $\measuredangle XMB = 2\measuredangle MBC$.Proposed by Davood Vakili

1990 Vietnam Team Selection Test, 2

Given a tetrahedron such that product of the opposite edges is $ 1$. Let the angle between the opposite edges be $ \alpha$, $ \beta$, $ \gamma$, and circumradii of four faces be $ R_1$, $ R_2$, $ R_3$, $ R_4$. Prove that \[ \sin^2\alpha \plus{} \sin^2\beta \plus{} \sin^2\gamma\ge\frac {1}{\sqrt {R_1R_2R_3R_4}} \]

2019 AIME Problems, 15

In acute triangle $ABC$ points $P$ and $Q$ are the feet of the perpendiculars from $C$ to $\overline{AB}$ and from $B$ to $\overline{AC}$, respectively. Line $PQ$ intersects the circumcircle of $\triangle ABC$ in two distinct points, $X$ and $Y$. Suppose $XP=10$, $PQ=25$, and $QY=15$. The value of $AB\cdot AC$ can be written in the form $m\sqrt n$ where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

2022 MOAA, 6

Define a positive integer $n$ to be [i]almost-cubic [/i] if it becomes a perfect cube upon concatenating the digit $5$. For example, $12$ is almost-cubic because $125 = 5^3$. Find the remainder when the sum of all almost-cubic $n < 10^8$ is divided by $1000$.

2001 National Olympiad First Round, 17

Tags: geometry
Let $ABC$ be a triangle such that midpoints of three altitudes are collinear. If the largest side of triangle is $10$, what is the largest possible area of the triangle? $ \textbf{(A)}\ 20 \qquad\textbf{(B)}\ 25 \qquad\textbf{(C)}\ 30 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 50 $

2013 Hitotsubashi University Entrance Examination, 3

Given a parabola $C : y=1-x^2$ in $xy$-palne with the origin $O$. Take two points $P(p,\ 1-p^2),\ Q(q,\ 1-q^2)\ (p<q)$ on $C$. (1) Express the area $S$ of the part enclosed by two segments $OP,\ OQ$ and the parabalola $C$ in terms of $p,\ q$. (2) If $q=p+1$, then find the minimum value of $S$. (3) If $pq=-1$, then find the minimum value of $S$.

2021 Harvard-MIT Mathematics Tournament., 2

Tags: combi
Ava and Tiffany participate in a knockout tournament consisting of a total of $32$ players. In each of $5$ rounds, the remaining players are paired uniformly at random. In each pair, both players are equally likely to win, and the loser is knocked out of the tournament. The probability that Ava and Tiffany play each other during the tournament is $\tfrac{a}{b},$ where $a$ and $b$ are relatively prime positive integers. Compute $100a + b.$

2019 IFYM, Sozopol, 1

Tags: geometry
The points $M$ and $N$ are on the side $BC$ of $\Delta ABC$, so that $BM=CN$ and $M$ is between $B$ and $N$. Points $P\in AN$ and $Q\in AM$ are such that $\angle PMC=\angle MAB$ and $\angle QNB=\angle NAC$. Prove that $\angle QBC=\angle PCB$.

2007 Harvard-MIT Mathematics Tournament, 23

In triangle $ABC$, $\angle ABC$ is obtuse. Point $D$ lies on side $AC$ such that $\angle ABD$ is right, and point $E$ lies on side $AC$ between $A$ and $D$ such that $BD$ bisects $\angle EBC$. Find $CE$ given that $AC=35$, $BC=7$, and $BE=5$.

1979 Spain Mathematical Olympiad, 5

Calculate the definite integral $$\int_2^4 \sin ((x-3)^3) dx$$

2021 HMNT, 5

How many ways are there to place $31$ knights in the cells of an $8 \times 8$ unit grid so that no two attack one another? (A knight attacks another knight if the distance between the centers of their cells is exactly $\sqrt5$.)

1955 AMC 12/AHSME, 7

Tags: percent
If a worker receives a $ 20$ percent cut in wages, he may regain his original pay exactly by obtaining a raise of: $ \textbf{(A)}\ \text{20 percent} \qquad \textbf{(B)}\ \text{25 percent} \qquad \textbf{(C)}\ 22\frac{1}{2} \text{ percent} \qquad \textbf{(D)}\ \$20 \qquad \textbf{(E)}\ \$25$

JBMO Geometry Collection, 2019

Triangle $ABC$ is such that $AB < AC$. The perpendicular bisector of side $BC$ intersects lines $AB$ and $AC$ at points $P$ and $Q$, respectively. Let $H$ be the orthocentre of triangle $ABC$, and let $M$ and $N$ be the midpoints of segments $BC$ and $PQ$, respectively. Prove that lines $HM$ and $AN$ meet on the circumcircle of $ABC$.

2012 Grigore Moisil Intercounty, 3

Let $ M,N,P $ on the sides $ AB,BC,CA, $ respectively, of a triangle $ ABC $ such that $ AM=BN=CP $ and such that $$ AB\cdot \overrightarrow{AT} +BC\cdot \overrightarrow{BT} +CA\cdot \overrightarrow{CT} =0, $$ where $ T $ is the centroid of $ MNP. $ Prove that $ ABC $ is equilateral.

2022 ELMO Revenge, 1

Tags: geometry
Let $ABC$ and $DBC$ be triangles with incircles touching at a point $P$ on $BC.$ Points $A,D$ lie on the same side of $BC$ and $DB < AB < DC < AC.$ The bisector of $\angle BDC$ meets line $AP$ at $X,$ and the altitude from $A$ meets $DP$ at $Y.$ Point $Z$ lies on line $XY$ so $ZP \perp BC.$ Show the reflection of $A$ over $BC$ is on line $ZD.$ [i]Proposed by squareman (Evan Chang), USA[/i]

1954 Poland - Second Round, 3

Given: point $ A $, line $ p $, and circle $ k $. Construct a triangle $ ABC $ with angles $ A = 60^\circ $, $ B = 90^\circ $, whose vertex $ B $ lies on line $ p $, and vertex $ C $ - on circle $ k $.

2020 Harvard-MIT Mathematics Tournament, 2

Tags:
How many positive integers at most $420$ leave different remainders when divided by each of $5$, $6$, and $7$? [i]Proposed by Milan Haiman.[/i]

2017 China Team Selection Test, 6

Every cell of a $2017\times 2017$ grid is colored either black or white, such that every cell has at least one side in common with another cell of the same color. Let $V_1$ be the set of all black cells, $V_2$ be the set of all white cells. For set $V_i (i=1,2)$, if two cells share a common side, draw an edge with the centers of the two cells as endpoints, obtaining graphs $G_i$. If both $G_1$ and $G_2$ are connected paths (no cycles, no splits), prove that the center of the grid is one of the endpoints of $G_1$ or $G_2$.

2021 Princeton University Math Competition, A4 / B6

Tags: algebra
The roots of a monic cubic polynomial $p$ are positive real numbers forming a geometric sequence. Suppose that the sum of the roots is equal to $10$. Under these conditions, the largest possible value of $|p(-1)|$ can be written as $\frac{m}{n}$, where $m$, $n$ are relatively prime integers. Find $m + n$.

2016 India IMO Training Camp, 3

For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions.

Kyiv City MO 1984-93 - geometry, 1992.11.5

The base of the pyramid is a triangle $ABC$, in which $\angle ACB= 30^o$, and the length of the median from the vertex $B$ is twice less than the side $AC$ and is equal to $\alpha$ . All side edges of the pyramid are inclined to the plane of the base at an angle $a$. Determine the cross-sectional area of ​​the pyramid with a plane passing through the vertex $B$ parallel to the edge $AD$ and inclined to the plane of the base at an angle of $\beta$,

2016 Saudi Arabia BMO TST, 3

Let $d$ be a positive integer. Show that for every integer $S$, there exist a positive integer $n$ and a sequence $a_1, ..., a_n \in \{-1, 1\}$ such that $S = a_1(1 + d)^2 + a_2(1 + 2d)^2 + ... + a_n(1 + nd)^2$.