This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2007 Cuba MO, 5

Prove that there is a unique positive integer formed only by the digits $2$ and $5$, which has $ 2007$ digits and is divisible by $2^{2007}$.

2018 Azerbaijan IZhO TST, 2

Problem 4. Let a,b be positive real numbers and let x,y be positive real numbers less than 1, such that: a/(1-x)+b/(1-y)=1 Prove that: ∛ay+∛bx≤1.

1997 IMO Shortlist, 16

In an acute-angled triangle $ ABC,$ let $ AD,BE$ be altitudes and $ AP,BQ$ internal bisectors. Denote by $ I$ and $ O$ the incenter and the circumcentre of the triangle, respectively. Prove that the points $ D, E,$ and $ I$ are collinear if and only if the points $ P, Q,$ and $ O$ are collinear.

2000 JBMO ShortLists, 20

Let $ABC$ be a triangle and let $a,b,c$ be the lengths of the sides $BC, CA, AB$ respectively. Consider a triangle $DEF$ with the side lengths $EF=\sqrt{au}$, $FD=\sqrt{bu}$, $DE=\sqrt{cu}$. Prove that $\angle A >\angle B >\angle C$ implies $\angle A >\angle D >\angle E >\angle F >\angle C$.

VI Soros Olympiad 1999 - 2000 (Russia), 9.5

Let b be a given real number. The sequence of integers $a_1, a_2,a_3, ...$ is such that $a_1 =(b]$ and $a_{n+1}=(a_n+b]$ for all $n\ge 1$ Prove that the sum $a_1+\frac{a_2}{2}+\frac{a_3}{3}+...+\frac{a_n}{n}$ is an integer number for any natural $n$ . (In the condition of the problem, $(x]$ denotes the smallest integer that is greater than or equal to $x$)

2012 Balkan MO Shortlist, G7

$ABCD$ is a cyclic quadrilateral. The lines $AD$ and $BC$ meet at X, and the lines $AB$ and $CD$ meet at $Y$ . The line joining the midpoints $M$ and $N$ of the diagonals $AC$ and $BD$, respectively, meets the internal bisector of angle $AXB$ at $P$ and the external bisector of angle $BYC$ at $Q$. Prove that $PXQY$ is a rectangle

2023 Harvard-MIT Mathematics Tournament, 2

Tags:
Points $X$, $Y$, and $Z$ lie on a circle with center $O$ such that $XY=12$. Points $A$ and $B$ lie on segment $XY$ such that $OA=AZ=ZB=BO=5$. Compute $AB$.

2010 Contests, 3

Suppose that $a_1,...,a_{15}$ are prime numbers forming an arithmetic progression with common difference $d > 0$ if $a_1 > 15$ show that $d > 30000$

2003 Oral Moscow Geometry Olympiad, 2

In a convex quadrilateral $ABCD$, $\angle ABC = 90^o$ , $\angle BAC = \angle CAD$, $AC = AD, DH$ is the alltitude of the triangle $ACD$. In what ratio does the line $BH$ divide the segment $CD$?

2003 AIME Problems, 4

In a regular tetrahedron the centers of the four faces are the vertices of a smaller tetrahedron. The ratio of the volume of the smaller tetrahedron to that of the larger is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Durer Math Competition CD Finals - geometry, 2014.D2

Tags: geometry , circles
On the inner surface of a fixed circle, rolls a wheel half the radius of the circle, without slipping. We marked a point red on the wheel. Prove that while the wheel makes a turn, the point moves on a line. [img]https://1.bp.blogspot.com/-PhgUWk0eU2c/X9j1gNJ7w3I/AAAAAAAAMzo/gP13TIZq7YsvNDBGVISkMQSdjwCgk_zwQCLcBGAsYHQ/s0/2014%2BDurer%2BD2.png[/img]

2013 Bangladesh Mathematical Olympiad, 1

Tags: geometry
Higher Secondary P1 A polygon is called degenerate if one of its vertices falls on a line that joins its neighboring two vertices. In a pentagon $ABCDE$, $AB=AE$, $BC=DE$, $P$ and $Q$ are midpoints of $AE$ and $AB$ respectively. $PQ||CD$, $BD$ is perpendicular to both $AB$ and $DE$. Prove that $ABCDE$ is a degenerate pentagon.

2024 Junior Macedonian Mathematical Olympiad, 5

The shapes in the image consist of six unit cubes. Which of the following 3D objects can be filled up with the aforementioned shapes: a) a cube with side length $3$, from which one edge has been removed (i.e. three layers of the shape [img]https://i.imgur.com/vUqgHS2.png[/img] )? b) a rectangular prism of size $5 \times 4 \times 3$, from which two edges of length $3$ have been removed from one of the $5 \times 3$ sides (i.e. three layers of the shape [img]https://imgur.com/W4pfEfz.png[/img] )? We can use each of shapes at most once, no two shapes can overlap, nor protrude from the 3D object and every unit cube of the 3D object must be covered by a unit cube of one of the constituent shapes. [center][img]https://imgur.com/evAmuep.png[/img][/center] [i]Proposed by Ilija Jovčeski[/i]

1993 Austrian-Polish Competition, 2

Consider all tetrahedra $ABCD$ in which the sum of the areas of the faces $ABD, ACD, BCD$ does not exceed $1$. Among such tetrahedra, find those with the maximum volume.

2003 Cuba MO, 3

Let $ABC$ be an acute triangle and $T$ be a point interior to this triangle. that $\angle ATB = \angle BTC = \angle CTA$. Let $M,N$ and $P$ be the feet of the perpendiculars from $T$ to $BC$, $CA$ and $AB$ respectively. Prove that if the circle circumscribed around $\vartriangle MNP$ cuts again the sides $ BC$, $CA$ and $AB$ in $M_1$, $N_1$, $P_1$ respectively, then the $\vartriangle M_1N_1P_1$ It is equilateral.

1982 Austrian-Polish Competition, 1

Find all pairs $(n, m)$ of positive integers such that $gcd ((n + 1)^m - n, (n + 1)^{m+3} - n) > 1$.

2006 District Olympiad, 2

Tags: trigonometry
Let $ABC$ be a triangle and let $M,N,P$ be points on the sides $BC$, $CA$ and $AB$ respectively such that \[ \frac{AP}{PB} = \frac{BM}{MC} = \frac{CN}{AN}. \] Prove that triangle if $MNP$ is equilateral then triangle $ABC$ is equilateral.

2011 ITAMO, 2

A sequence of positive integers $a_1, a_2,\ldots, a_n$ is called [i]ladder[/i] of length $n$ if it consists of $n$ consecutive integers in ascending order. (a) Prove that for every positive integer $n$ there exist two ladders of length $n$, with no elements in common, $a_1, a_2,\ldots, a_n$ and $b_1, b_2,\ldots, b_n$, such that for all $i$ between $1$ and $n$, the greatest common divisor of $a_i$ and $b_i$ is equal to $1$. (b) Prove that for every positive integer $n$ there exist two ladders of length $n$, with no elements in common, $a_1, a_2,\ldots, a_n$ and $b_1, b_2,\ldots, b_n$, such that for all $i$ between $1$ and $n$, the greatest common divisor of $a_i$ and $b_i$ is greater than $1$.

2020 LMT Spring, 7

Tags:
The hexagonal pattern constructed below has two smaller hexagons per side and has a total of $30$ edges. A similar figure is constructed with $20$ smaller hexagons per side. Compute the number of edges in this larger figure. [Insert Diagram] [i]Proposed by Ezra Erives[/i]

2018 Pan-African Shortlist, G6

Let $\Gamma$ be the circumcircle of an acute triangle $ABC$. The perpendicular line to $AB$ passing through $C$ cuts $AB$ in $D$ and $\Gamma$ again in $E$. The bisector of the angle $C$ cuts $AB$ in $F$ and $\Gamma$ again in $G$. The line $GD$ meets $\Gamma$ again at $H$ and the line $HF$ meets $\Gamma$ again at $I$. Prove that $AI = EB$.

2015 Saudi Arabia Pre-TST, 3.2

Prove that the polynomial $P(X) = (X^2-12X +11)^4+23$ can not be written as the product of three non-constant polynomials with integer coefficients. (Le Anh Vinh)

2005 Federal Math Competition of S&M, Problem 1

Let $a$ and $b$ be positive integers and $K=\sqrt{\frac{a^2+b^2}2}$, $A=\frac{a+b}2$. If $\frac KA$ is a positive integer, prove that $a=b$.

2010 Contests, 3

[b](a)[/b]Prove that every pentagon with integral coordinates has at least two vertices , whose respective coordinates have the same parity. [b](b)[/b]What is the smallest area possible of pentagons with integral coordinates. Albanian National Mathematical Olympiad 2010---12 GRADE Question 3.

IV Soros Olympiad 1997 - 98 (Russia), 9.4

Tags: algebra
Solve the equation $$(x^2-x-1)^2-x^3=5$$

2023 Regional Olympiad of Mexico West, 5

We have a rhombus $ABCD$ with $\angle BAD=60^\circ$. We take points $F,H,G$ on the sides $AD,DC$ and the diagonal $AC$, respectively, such that $DFGH$ is a parallelogram. Prove that $BFH$ is equilateral.