Found problems: 85335
MMPC Part II 1996 - 2019, 2016.2
Let $s_1,s_2,s_3,s_4,...$ be a sequence (infinite list) of $1$s and $0$s. For example $1,0,1,0,1,0,...$, that is, $s_n=1$ if $n$ is odd and $s_n=0$ if $n$ is even, is such a sequence. Prove that it is possible to delete infinitely many terms in $s_1,s_2,s_3,s_4,...$ so that the resulting sequence is the original sequence. For the given example, one can delete $s_3,s_4,s_7,s_8,s_{11},s_{12},...$
2014 National Olympiad First Round, 27
Let $f$ be a function defined on positive integers such that $f(1)=4$, $f(2n)=f(n)$ and $f(2n+1)=f(n)+2$ for every positive integer $n$. For how many positive integers $k$ less than $2014$, it is $f(k)=8$?
$
\textbf{(A)}\ 45
\qquad\textbf{(B)}\ 120
\qquad\textbf{(C)}\ 165
\qquad\textbf{(D)}\ 180
\qquad\textbf{(E)}\ 215
$
MathLinks Contest 4th, 6.2
Let $P$ be the set of points in the plane, and let $f : P \to P$ be a function such that the image through $f$ of any triangle is a square (any polygon is considered to be formed by the reunion of the points on its sides). Prove that $f(P)$ is a square.
2019 PUMaC Algebra A, 5
Let $\omega=e^{\frac{2\pi i}{2017}}$ and $\zeta = e^{\frac{2\pi i}{2019}}$. Let $S=\{(a,b)\in\mathbb{Z}\,|\,0\leq a \leq 2016, 0 \leq b \leq 2018, (a,b)\neq (0,0)\}$. Compute
$$\prod_{(a,b)\in S}(\omega^a-\zeta^b).$$
1979 AMC 12/AHSME, 18
To the nearest thousandth, $\log_{10}2$ is $.301$ and $\log_{10}3$ is $.477$. Which of the following is the best approximation of $\log_5 10$?
$\textbf{(A) }\frac{8}{7}\qquad\textbf{(B) }\frac{9}{7}\qquad\textbf{(C) }\frac{10}{7}\qquad\textbf{(D) }\frac{11}{7}\qquad\textbf{(E) }\frac{12}{7}$
2005 Taiwan National Olympiad, 3
$a_1, a_2, ..., a_{95}$ are positive reals. Show that
$\displaystyle \sum_{k=1}^{95}{a_k} \le 94+ \prod_{k=1}^{95}{\max{\{1,a_k\}}}$
2020 Bangladesh Mathematical Olympiad National, Problem 3
Let $R$ be the set of all rectangles centered at the origin and with perimeter $1$ (the center of a rectangle is the intersection point of its two diagonals). Let $S$ be a region that contains all of the rectangles in $R$ (region $A$ contains region $B$, if $B$ is completely inside of $A$). The minimum possible area of $S$ has the form $\pi a$, where $a$ is a real number. Find $1/a$.
2001 Croatia National Olympiad, Problem 1
On the unit circle $k$ with center $O$, points $A$ and $B$ with $AB=1$ are chosen and unit circles $k_1$ and $k_2$ with centers $A$ and $B$ are drawn. A sequence of circles $(l_n)$ is defined as follows: circle $l_1$ is tangent to $k$ internally at $D_1$ and to $k_1,k_2$ externally, and for $n>1$ circle $l_n$ is tangent to $k_1$ and $k_2$ and to $l_{n-1}$ at $D_n$. For each $n$, compute $d_n=OD_n$ and the radius $r_n$ of $l_n$.
2023 LMT Fall, 7
How many $2$-digit factors does $555555$ have?
2009 Croatia Team Selection Test, 2
On sport games there was 1991 participant from which every participant knows at least n other participants(friendship is mutual). Determine the lowest possible n for which we can be sure that there are 6 participants between which any two participants know each other.
2017 AMC 12/AHSME, 3
Suppose that $x$ and $y$ are nonzero real numbers such that \[\frac{3x+y}{x-3y}= -2.\] What is the value of \[\frac{x+3y}{3x-y}?\]
$\textbf{(A) } {-3} \qquad \textbf{(B) } {-1} \qquad \textbf{(C) } 1 \qquad \textbf{(D) }2 \qquad \textbf{(E) } 3$
1997 Iran MO (3rd Round), 6
Let $\mathcal P$ be the set of all points in $\mathbb R^n$ with rational coordinates. For the points $A,B \in \mathcal l{P}$, one can move from $A$ to $B$ if the distance $AB$ is $1$. Prove that every point in $\mathcal l{ P}$ can be reached from any other point in $\mathcal{P}$ by a finite sequence of moves if and only if $n \geq 5$.
KoMaL A Problems 2024/2025, A. 884
We fill in an $n\times n$ table with real numbers such that the sum of the numbers in each row and each coloumn equals $1$. For which values of $K$ is the following statement true: if the sum of the absolute values of the negative entries in the table is at most $K$, then it's always possible to choose $n$ positive entries of the table such that each row and each coloumn contains exactly one of the chosen entries.
[i]Proposed by Dávid Bencsik, Budapest[/i]
2005 Swedish Mathematical Competition, 1
Find all integer solutions $x$,$y$ of the equation $(x+y^2)(x^2+y)=(x+y)^3$.
1996 Italy TST, 2
2. Let $A_1,A_2,...,A_n$be distinct subsets of an n-element set $ X$ ($n \geq 2$). Show that there exists an element $x$ of $X$ such that the sets $A_1\setminus \{x\}$ ,:......., $A_n\setminus \{x\}$ are all distinct.
2009 Greece Team Selection Test, 4
Given are $N$ points on the plane such that no three of them are collinear,which are coloured red,green and black.We consider all the segments between these points and give to each segment a [i]"value"[/i] according to the following conditions:
[b]i.[/b]If at least one of the endpoints of a segment is black then the segment's [i]"value"[/i] is $0$.
[b]ii.[/b]If the endpoints of the segment have the same colour,re or green,then the segment's [i]"value"[/i] is $1$.
[b]iii.[/b]If the endpoints of the segment have different colours but none of them is black,then the segment's [i]"value"[/i] is $-1$.
Determine the minimum possible sum of the [i]"values"[/i] of the segments.
2024 USAJMO, 4
Let $n \geq 3$ be an integer. Rowan and Colin play a game on an $n \times n$ grid of squares, where each square is colored either red or blue. Rowan is allowed to permute the rows of the grid and Colin is allowed to permute the columns. A grid coloring is [i]orderly[/i] if: [list] [*]no matter how Rowan permutes the rows of the coloring, Colin can then permute the columns to restore the original grid coloring; and [*]no matter how Colin permutes the columns of the coloring, Rowan can then permute the rows to restore the original grid coloring. [/list] In terms of $n$, how many orderly colorings are there?
[i]Proposed by Alec Sun[/i]
1968 AMC 12/AHSME, 13
If $m$ and $n$ are the roots of $x^2+mx+n=0$, $m\ne0$, $n\ne0$, then the sum of the roots is:
$\textbf{(A)}\ -\dfrac{1}{2} \qquad
\textbf{(B)}\ -1 \qquad
\textbf{(C)}\ \dfrac{1}{2} \qquad
\textbf{(D)}\ 1 \qquad
\textbf{(E)}\ \text{Undetermined} $
2016 India National Olympiad, P5
Let $ABC$ be a right-angle triangle with $\angle B=90^{\circ}$. Let $D$ be a point on $AC$ such that the inradii of the triangles $ABD$ and $CBD$ are equal. If this common value is $r^{\prime}$ and if $r$ is the inradius of triangle $ABC$, prove that
\[ \cfrac{1}{r'}=\cfrac{1}{r}+\cfrac{1}{BD}. \]
2005 Postal Coaching, 16
The diagonals AC and BD of a cyclic ABCD intersect at E. Let O be circumcentre of ABCD. If midpoints of AB, CD, OE are collinear prove that AD=BC.
Bomb
[color=red][Moderator edit: The problem is wrong. See also http://www.mathlinks.ro/Forum/viewtopic.php?t=53090 .][/color]
1995 Cono Sur Olympiad, 3
Let $n$ be a natural number and $f(n) = 2n - 1995 \lfloor \frac{n}{1000} \rfloor$($\lfloor$ $\rfloor$ denotes the floor function).
1. Show that if for some integer $r$: $f(f(f...f(n)...))=1995$ (where the function $f$ is applied $r$ times), then $n$ is multiple of $1995$.
2. Show that if $n$ is multiple of 1995, then there exists r such that:$f(f(f...f(n)...))=1995$ (where the function $f$ is applied $r$ times). Determine $r$ if $n=1995.500=997500$
2008 AMC 10, 13
For each positive integer $ n$, the mean of the first $ n$ terms of a sequence is $ n$. What is the $ 2008$th term of the sequence?
$ \textbf{(A)}\ 2008 \qquad
\textbf{(B)}\ 4015 \qquad
\textbf{(C)}\ 4016 \qquad
\textbf{(D)}\ 4,030,056 \qquad
\textbf{(E)}\ 4,032,064$
2020 Colombia National Olympiad, 5
Given an acute-angled triangle $ABC$ with $D$ is the foot of the altitude from $A.$ The perpendicular lines to $BC$ through $B$ and $C$ intersect the altitudes from $C$ and $B$ at points $M$ and $N$, respectively. Show that $AD$ $=$ $BC$ if and only if $A,M,N$ and $D$ lie on the same circle.
2011 ELMO Shortlist, 4
In terms of $n\ge2$, find the largest constant $c$ such that for all nonnegative $a_1,a_2,\ldots,a_n$ satisfying $a_1+a_2+\cdots+a_n=n$, the following inequality holds:
\[\frac1{n+ca_1^2}+\frac1{n+ca_2^2}+\cdots+\frac1{n+ca_n^2}\le \frac{n}{n+c}.\]
[i]Calvin Deng.[/i]
2024 China Girls Math Olympiad, 2
There are $8$ cards on which the numbers $1$, $2$, $\dots$, $8$ are written respectively. Alice and Bob play the following game: in each turn, Alice gives two cards to Bob, who must keep one card and discard the other. The game proceeds for four turns in total; in the first two turns, Bob cannot keep both of the cards with the larger numbers, and in the last two turns, Bob also cannot keep both of the cards with the larger numbers. Let $S$ be the sum of the numbers written on the cards that Bob keeps. Find the greatest positive integer $N$ for which Bob can guarantee that $S$ is at least $N$.