This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1973 IMO Shortlist, 2

Given a circle $K$, find the locus of vertices $A$ of parallelograms $ABCD$ with diagonals $AC \leq BD$, such that $BD$ is inside $K$.

2020-2021 OMMC, 3

Tags:
Two real numbers $x, y$ are chosen randomly and independently on the interval $(1, r)$ where $r$ is some real number between $1024$ and $2048$. Let $P$ be the probability that $\lfloor \log_2x \rfloor > \lfloor \log_2y \rfloor .$ The value of $P$ is maximized when $r = \frac{p}{q}$ where $p,q$ are relatively prime positive integers. Find $p+q.$

2006 Baltic Way, 8

The director has found out that six conspiracies have been set up in his department, each of them involving exactly $3$ persons. Prove that the director can split the department in two laboratories so that none of the conspirative groups is entirely in the same laboratory.

2014 European Mathematical Cup, 4

Find all functions $f$ from positive integers to themselves such that: 1)$f(mn)=f(m)f(n)$ for all positive integers $m, n$ 2)$\{1, 2, ..., n\}=\{f(1), f(2), ... f(n)\}$ is true for infinitely many positive integers $n$.

1961 All Russian Mathematical Olympiad, 012

Given $120$ unit squares arbitrarily situated in the $20\times 25$ rectangle. Prove that you can place a circle with the unit diameter without intersecting any of the squares.

2020 Nigerian MO round 3, #2

Tags: algebra
a sequence $(a_n)$ $n$ $\geq 1$ is defined by the following equations; $a_1=1$, $a_2=2$ ,$a_3=1$, $a_{2n-1}$$a_{2n}$=$a_2$$a_{2n-3}$+$(a_2a_{2n-3}+a_4a_{2n-5}.....+a_{2n-2}a_1)$ for $n$ $\geq 2$ $na_{2n}$$a_{2n+1}$=$a_2$$a_{2n-2}$+$(a_2a_{2n-2}+a_4a_{2n-4}.....+a_{2n-2}a_2)$ for $n$ $\geq 2$ find $a_{2020}$

2012 Princeton University Math Competition, A8

Tags: geometry
Cyclic quadrilateral $ABCD$ has side lengths $AB = 2, BC = 3, CD = 5, AD = 4$. Find $\sin A \sin B(\cot A/2 + \cot B/2 + \cot C/2 + \cot D/2)^2$. Your answer can be written in simplest form as $a/b$. Find $a + b$.

2010 Iran MO (3rd Round), 2

$R$ is a ring such that $xy=yx$ for every $x,y\in R$ and if $ab=0$ then $a=0$ or $b=0$. if for every Ideal $I\subset R$ there exist $x_1,x_2,..,x_n$ in $R$ ($n$ is not constant) such that $I=(x_1,x_2,...,x_n)$, prove that every element in $R$ that is not $0$ and it's not a unit, is the product of finite irreducible elements.($\frac{100}{6}$ points)

Kvant 2024, M2809

Given is a triangle $ABC$ and the points $M, P$ lie on the segments $AB, BC$, respectively, such that $AM=BC$ and $CP=BM$. If $AP$ and $CM$ meet at $O$ and $2\angle AOM=\angle ABC$, find the measure of $\angle ABC$.

2005 AMC 12/AHSME, 13

In the five-sided star shown, the letters $A,B,C,D,$ and $E$ are replaced by the numbers $3,5,6,7,$ and $9$, although not necessarily in this order. The sums of the numbers at the ends of the line segments $\overline{AB}$,$\overline{BC}$,$\overline{CD}$,$\overline{DE}$, and $\overline{EA}$ form an arithmetic sequence, although not necessarily in this order. What is the middle term of the arithmetic sequence? [asy] size(150); defaultpen(linewidth(0.8)); string[] strng = {'A','D','B','E','C'}; pair A=dir(90),B=dir(306),C=dir(162),D=dir(18),E=dir(234); draw(A--B--C--D--E--cycle); for(int i=0;i<=4;i=i+1) { path circ=circle(dir(90-72*i),0.125); unfill(circ); draw(circ); label("$"+strng[i]+"$",dir(90-72*i)); } [/asy] $ \textbf{(A)}\ 9\qquad \textbf{(B)}\ 10\qquad \textbf{(C)}\ 11\qquad \textbf{(D)}\ 12\qquad \textbf{(E)}\ 13$

2010 LMT, 34

Tags:
A [i]prime power[/i] is an integer of the form $p^k,$ where $p$ is a prime and $k$ is a nonnegative integer. How many prime powers are there less than or equal to $10^6?$ Your score will be $16-80|\frac{\textbf{Your Answer}}{\textbf{Actual Answer}}-1|$ rounded to the nearest integer or $0,$ whichever is higher.

2012 Macedonia National Olympiad, 2

Tags: inequalities
If $~$ $a,\, b,\, c,\, d$ $~$ are positive real numbers such that $~$ $abcd=1$ $~$ then prove that the following inequality holds \[ \frac{1}{bc+cd+da-1} + \frac{1}{ab+cd+da-1} + \frac{1}{ab+bc+da-1} + \frac{1}{ab+bc+cd-1}\; \le\; 2\, . \] When does inequality hold?

2020 CCA Math Bonanza, T1

Tags:
Compute the number of permutations of $\{1,2,3\}$ with the property that there is some number that can be removed such that the remaining numbers are in increasing order. For example, $(2,1,3)$ has this property because removing $1$ leaves $(2,3)$, which is in increasing order. [i]2020 CCA Math Bonanza Team Round #1[/i]

2016 LMT, 6

Tags:
How many functions $f:\{1,2,3,4\}\rightarrow \{1,2,3\}$ are surjective? [i]Proposed by Nathan Ramesh

2023 ISL, C3

Let $n$ be a positive integer. A [i]Japanese triangle[/i] consists of $1 + 2 + \dots + n$ circles arranged in an equilateral triangular shape such that for each $i = 1$, $2$, $\dots$, $n$, the $i^{th}$ row contains exactly $i$ circles, exactly one of which is coloured red. A [i]ninja path[/i] in a Japanese triangle is a sequence of $n$ circles obtained by starting in the top row, then repeatedly going from a circle to one of the two circles immediately below it and finishing in the bottom row. Here is an example of a Japanese triangle with $n = 6$, along with a ninja path in that triangle containing two red circles. [asy] // credit to vEnhance for the diagram (which was better than my original asy): size(4cm); pair X = dir(240); pair Y = dir(0); path c = scale(0.5)*unitcircle; int[] t = {0,0,2,2,3,0}; for (int i=0; i<=5; ++i) { for (int j=0; j<=i; ++j) { filldraw(shift(i*X+j*Y)*c, (t[i]==j) ? lightred : white); draw(shift(i*X+j*Y)*c); } } draw((0,0)--(X+Y)--(2*X+Y)--(3*X+2*Y)--(4*X+2*Y)--(5*X+2*Y),linewidth(1.5)); path q = (3,-3sqrt(3))--(-3,-3sqrt(3)); draw(q,Arrows(TeXHead, 1)); label("$n = 6$", q, S); label("$n = 6$", q, S); [/asy] In terms of $n$, find the greatest $k$ such that in each Japanese triangle there is a ninja path containing at least $k$ red circles.

2004 Purple Comet Problems, 5

The number $2.5081081081081 \ldots$ can be written as $m/n$ where $m$ and $n$ are natural numbers with no common factors. Find $m + n$.

2008 IMAC Arhimede, 1

Find all prime numbers $ p $ for which $ 1 + p\cdot 2^{p} $ is a perfect square.

2009 All-Russian Olympiad, 7

Let be given a parallelogram $ ABCD$ and two points $ A_1$, $ C_1$ on its sides $ AB$, $ BC$, respectively. Lines $ AC_1$ and $ CA_1$ meet at $ P$. Assume that the circumcircles of triangles $ AA_1P$ and $ CC_1P$ intersect at the second point $ Q$ inside triangle $ ACD$. Prove that $ \angle PDA \equal{} \angle QBA$.

2003 Putnam, 1

Do there exist polynomials $a(x)$, $b(x)$, $c(y)$, $d(y)$ such that \[1 + xy + x^2y^2= a(x)c(y) + b(x)d(y)\] holds identically?

2020 Malaysia IMONST 1, 18

In a triangle, the ratio of the interior angles is $1 : 5 : 6$, and the longest side has length $12$. What is the length of the altitude (height) of the triangle that is perpendicular to the longest side?

1986 IMO Longlists, 59

Let $ABCD$ be a convex quadrilateral whose vertices do not lie on a circle. Let $A'B'C'D'$ be a quadrangle such that $A',B', C',D'$ are the centers of the circumcircles of triangles $BCD,ACD,ABD$, and $ABC$. We write $T (ABCD) = A'B'C'D'$. Let us define $A''B''C''D'' = T (A'B'C'D') = T (T (ABCD)).$ [b](a)[/b] Prove that $ABCD$ and $A''B''C''D''$ are similar. [b](b) [/b]The ratio of similitude depends on the size of the angles of $ABCD$. Determine this ratio.

2011 USA Team Selection Test, 6

A polynomial $P(x)$ is called [i]nice[/i] if $P(0) = 1$ and the nonzero coefficients of $P(x)$ alternate between $1$ and $-1$ when written in order. Suppose that $P(x)$ is nice, and let $m$ and $n$ be two relatively prime positive integers. Show that \[Q(x) = P(x^n) \cdot \frac{(x^{mn} - 1)(x-1)}{(x^m-1)(x^n-1)}\] is nice as well.

2021 Stars of Mathematics, 1

For every integer $n\geq 3$, let $s_n$ be the sum of all primes (strictly) less than $n$. Are there infinitely many integers $n\geq 3$ such that $s_n$ is coprime to $n$? [i]Russian Competition[/i]

2013 Kosovo National Mathematical Olympiad, 1

Tags:
Prove that: $\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{2}+\sqrt3+\sqrt5$

2010 China Team Selection Test, 2

Tags: inequalities
Find all positive real numbers $\lambda$ such that for all integers $n\geq 2$ and all positive real numbers $a_1,a_2,\cdots,a_n$ with $a_1+a_2+\cdots+a_n=n$, the following inequality holds: $\sum_{i=1}^n\frac{1}{a_i}-\lambda\prod_{i=1}^{n}\frac{1}{a_i}\leq n-\lambda$.