This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022 IMO Shortlist, C3

In each square of a garden shaped like a $2022 \times 2022$ board, there is initially a tree of height $0$. A gardener and a lumberjack alternate turns playing the following game, with the gardener taking the first turn: [list] [*] The gardener chooses a square in the garden. Each tree on that square and all the surrounding squares (of which there are at most eight) then becomes one unit taller. [*] The lumberjack then chooses four different squares on the board. Each tree of positive height on those squares then becomes one unit shorter. [/list] We say that a tree is [i]majestic[/i] if its height is at least $10^6$. Determine the largest $K$ such that the gardener can ensure there are eventually $K$ majestic trees on the board, no matter how the lumberjack plays.

2012 Math Prize For Girls Problems, 17

How many ordered triples $(a, b, c)$, where $a$, $b$, and $c$ are from the set $\{ 1, 2, 3, \dots, 17 \}$, satisfy the equation \[ a^3 + b^3 + c^3 + 2abc = a^2b + a^2c + b^2c + ab^2 + ac^2 + bc^2 \, ? \]

2010 Sharygin Geometry Olympiad, 15

Let $AA_1, BB_1$ and $CC_1$ be the altitudes of an acute-angled triangle $ABC.$ $AA_1$ meets $B_1C_1$ in a point $K.$ The circumcircles of triangles $A_1KC_1$ and $A_1KB_1$ intersect the lines $AB$ and $AC$ for the second time at points $N$ and $L$ respectively. Prove that [b]a)[/b] The sum of diameters of these two circles is equal to $BC,$ [b] b)[/b] $\frac{A_1N}{BB_1} + \frac{A_1L}{CC_1}=1.$

1991 Arnold's Trivium, 7

Tags: ellipse , conic
How many normals to an ellipse can be drawn from a given point in plane? Find the region in which the number of normals is maximal.

2012 India PRMO, 13

Tags: algebra
If $a=b-c, b=c-d, c=d-a$ and $abcd\ne 0$, then what is the value of $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}$?

2022 Yasinsky Geometry Olympiad, 6

Let $AD$, $BE$ and $CF$ be the diameters of the circle circumscribed around the acute angle triangle $ABC$. Point $N$ is the midpoint of the arc $CAD$, and point $M$ is the midpoint of arc $BAD$. Prove that the lines $EN$ and $MF$ intersect at the angle bisector of $\angle BAC$. (Matvii Kurskyi)

2007 ITest, 30

While working with some data for the Iowa City Hospital, James got up to get a drink of water. When he returned, his computer displayed the “blue screen of death” (it had crashed). While rebooting his computer, James remembered that he was nearly done with his calculations since the last time he saved his data. He also kicked himself for not saving before he got up from his desk. He had computed three positive integers $a$, $b$, and $c$, and recalled that their product is $24$, but he didn’t remember the values of the three integers themselves. What he really needed was their sum. He knows that the sum is an even two-digit integer less than $25$ with fewer than $6$ divisors. Help James by computing $a+b+c$.

2006 Stanford Mathematics Tournament, 13

A ray is drawn from the origin tangent to the graph of the upper part of the hyperbola $y^2=x^2-x+1$ in the first quadrant. This ray makes an angle of $\theta$ with the positive $x$-axis. Compute $\cos\theta$.

2007 AIME Problems, 1

Tags:
A mathematical organization is producing a set of commemorative license plates. Each plate contains a sequence of five characters chosen from the four letters in AIME and the four digits in $2007$. No character may appear in a sequence more times than it appears among the four letters in AIME or the four digits in $2007$. A set of plates in which each possible sequence appears exactly once contains $N$ license plates. Find $\frac{N}{10}$.

2020 USMCA, 22

Tags:
Kelvin the Frog places $40$ rooks on a uniformly random subset of $40$ squares of a $20 \times 20$ chessboard. Then, Alex the Kat chooses two of the $40$ rooks uniformly at random. What is the probability that Alex's two rooks attack each other? Two rooks attack each other if they are on the same row or column, and no piece stands between them.

2016 IberoAmerican, 6

Tags:
Let $k$ be a positive integer and $a_1, a_2,$ $\cdot \cdot \cdot$ $, a_k$ digits. Prove that there exists a positive integer $n$ such that the last $2k$ digits of $2^n$ are, in the following order, $a_1, a_2,$ $\cdot \cdot \cdot$ $, a_k , b_1, b_2,$ $\cdot \cdot \cdot$ $, b_k$, for certain digits $b_1, b_2,$ $\cdot \cdot \cdot$ $, b_k$

2025 Malaysian IMO Training Camp, 8

Tags: geometry
Let $ABC$ be a non-isosceles and acute triangle. $X$ is a point on arc $BC$ not containing $A$ such that $BA-CA = CX-BX$. The incircle of $\triangle ABC$ touches $AC$ and $AB$ at $E$ and $F$ respectively. The $X$-excircle of $\triangle XBC$ touches $XC$ and $XB$ at $Y$ and $Z$ respectively. Let $T$ be such that $TA$ and $TX$ bisects $\angle BAC$ and $\angle BXC$ respectively. Prove that $T$ lies on the radical axis of circles $(BFZ)$ and $(CEY)$. [i](Proposed by Chuah Jia Herng)[/i]

2015 Estonia Team Selection Test, 5

Find all functions $f$ from reals to reals which satisfy $f (f(x) + f(y)) = f(x^2) + 2x^2 f(y) + (f(y))^2$ for all real numbers $x$ and $y$.

1984 Polish MO Finals, 4

A coin is tossed $n$ times, and the outcome is written in the form ($a_1,a_2,...,a_n$), where $a_i = 1$ or $2$ depending on whether the result of the $i$-th toss is the head or the tail, respectively. Set $b_j = a_1 +a_2 +...+a_j$ for $j = 1,2,...,n$, and let $p(n)$ be the probability that the sequence $b_1,b_2,...,b_n$ contains the number $n$. Express $p(n)$ in terms of $p(n-1)$ and $p(n-2)$.

2024 AMC 12/AHSME, 1

Tags:
In a long line of people, the 1013th person from the left is also the 1010th person from the right. How many people are in the line? $ \textbf{(A) }2021 \qquad \textbf{(B) }2022 \qquad \textbf{(C) }2023 \qquad \textbf{(D) }2024 \qquad \textbf{(E) }2025 \qquad $

2010 LMT, 7

Tags:
Given a rectangle $EFGH$ with $EF=3$ and $FG=2010,$ mark a point $P$ on $FG$ such that $FP=4.$ A laser beam is shot from $E$ to $P,$ which then reflects off $FG,$ then $EH,$ then $FG,$ etc. Once it reaches some point of $GH,$ the beam is absorbed; it stops reflecting. How far does the beam travel?

1997 South africa National Olympiad, 4

Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ which satisfy \[ f(m + f(n)) = f(m) + n \] for all $m,n \in \mathbb{Z}$.

VMEO III 2006, 12.4

Given a binary serie $A=a_1a_2...a_k$ is called "symmetry" if $a_i=a_{k+1-i}$ for all $i=1,2,3,...,k$, and $k$ is the length of that binary serie. If $A=11...1$ or $A=00...0$ then it is called "special". Find all positive integers $m$ and $n$ such that there exist non "special" binary series $A$ (length $m$) and $B$ (length $n$) satisfying when we place them next to each other, we receive a "symmetry" binary serie $AB$

2019 Korea Junior Math Olympiad., 4

Tags: sequence
$\{a_{n}\}$ is a sequence of natural numbers satisfying the following inequality for all natural number $n$: $$(a_{1}+\cdots+a_{n})\left(\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}\right)\le{n^{2}}+2019$$ Prove that $\{a_{n}\}$ is constant.

2019 Iran Team Selection Test, 1

Find all polynomials $P(x,y)$ with real coefficients such that for all real numbers $x,y$ and $z$: $$P(x,2yz)+P(y,2zx)+P(z,2xy)=P(x+y+z,xy+yz+zx).$$ [i]Proposed by Sina Saleh[/i]

Kvant 2020, M2629

Tags: area , polygon , geometry
The figure shows an arbitrary (green) triangle in the center. White squares were built on its sides to the outside. Some of their vertices were connected by segments, white squares were built on them again to the outside, and so on. In the spaces between the squares, triangles and quadrilaterals were formed, which were painted in different colors. Prove that [list=a] [*]all colored quadrilaterals are trapezoids; [*]the areas of all polygons of the same color are equal; [*]the ratios of the bases of one-color trapezoids are equal; [*]if $S_0=1$ is the area of the original triangle, and $S_i$ is the area of the colored polygons at the $i^{\text{th}}$ step, then $S_1=1$, $S_2=5$ and for $n\geqslant 3$ the equality $S_n=5S_{n-1}-S_{n-2}$ is satisfied. [/list] [i]Proposed by F. Nilov[/i] [center][img width="40"]https://i.ibb.co/n8gt0pV/Screenshot-2023-03-09-174624.png[/img][/center]

2013 USA TSTST, 1

Let $ABC$ be a triangle and $D$, $E$, $F$ be the midpoints of arcs $BC$, $CA$, $AB$ on the circumcircle. Line $\ell_a$ passes through the feet of the perpendiculars from $A$ to $DB$ and $DC$. Line $m_a$ passes through the feet of the perpendiculars from $D$ to $AB$ and $AC$. Let $A_1$ denote the intersection of lines $\ell_a$ and $m_a$. Define points $B_1$ and $C_1$ similarly. Prove that triangle $DEF$ and $A_1B_1C_1$ are similar to each other.

III Soros Olympiad 1996 - 97 (Russia), 9.6

Tags: fraction , algebra
Find the common fraction with the smallest positive denominator lying between the fractions $\frac{96}{35}$ and $\frac{97}{36} $.

2017 Israel Oral Olympiad, 4

What is the shortest possible side length of a four-dimensional hypercube that contains a regular octahedron with side 1?

1989 China Team Selection Test, 1

Tags: function , algebra
Let $\mathbb{N} = \{1,2, \ldots\}.$ Does there exists a function $f: \mathbb{N} \mapsto \mathbb{N}$ such that $\forall n \in \mathbb{N},$ $f^{1989}(n) = 2 \cdot n$ ?