Found problems: 85335
2025 AIME, 15
Let $N$ denote the numbers of ordered triples of positive integers $(a, b, c)$ such that $a, b, c \le 3^6$ and $a^3 + b^3 + c^3$ is a multiple of $3^7$. Find the remainder when $N$ is divided by $1000$.
2009 Bosnia Herzegovina Team Selection Test, 3
$a_{1},a_{2},\dots,a_{100}$ are real numbers such that:\[
a_{1}\geq a_{2}\geq\dots\geq a_{100}\geq0\]
\[
a_{1}^{2}+a_{2}^{2}\geq100\]
\[
a_{3}^{2}+a_{4}^{2}+\dots+a_{100}^{2}\geq100\]
What is the minimum value of sum $a_{1}+a_{2}+\dots+a_{100}.$
1974 Chisinau City MO, 74
Solve the equation: $x^3-2ax^2+(a^2-2\sqrt2 a -6)x + 2\sqrt2 a^2+ 8a + 4\sqrt2 =0$
2024 Moldova Team Selection Test, 8
Let $a_1, \dots, a_n, b_1, \dots, b_n$ be $2n$ positive integers such that the $n+1$ products
\[a_1 a_2 a_3 \cdots a_n, b_1 a_2 a_3 \cdots a_n, b_1 b_2 a_3 \cdots a_n, \dots, b_1 b_2 b_3 \cdots b_n\]
form a strictly increasing arithmetic progression in that order. Determine the smallest possible integer that could be the common difference of such an arithmetic progression.
2024-IMOC, G7
Triangle $ABC$ has circumcenter $O$ and incenter $I$. The incircle is tangent to $AC, AB$ at $E, F$, respectively. $H$ is the orthocenter of $\triangle BIC$. $\odot(AEF)$ and $\odot(ABC)$ intersects again at $S$. $BC, AH$ intersects $OI$ again at $J, K$, respectively. Prove that $H, K, J, S$ are concyclic.
[i]Proposed by chengbilly[/i]
2024 All-Russian Olympiad Regional Round, 9.2
On a cartesian plane a parabola $y = x^2$ is drawn. For a given $k > 0$ we consider all trapezoids inscribed into this parabola with bases parallel to the x-axis, and the product of the lengths of their bases is exactly $k$. Prove that the diagonals of all such trapezoids share a common point.
2018 Online Math Open Problems, 23
Let $ABC$ be a triangle with $BC=13, CA=11, AB=10$. Let $A_1$ be the midpoint of $BC$. A variable line $\ell$ passes through $A_1$ and meets $AC,AB$ at $B_1,C_1$. Let $B_2,C_2$ be points with $B_2B=B_2C, B_2C_1\perp AB, C_2B=C_2C, C_2B_1 \perp AC$, and define $P=BB_2\cap CC_2$. Suppose the circles of diameters $BB_2, CC_2$ meet at a point $Q\neq A_1$. Given that $Q$ lies on the same side of line $BC$ as $A$, the minimum possible value of $\dfrac{PB}{PC}+\dfrac{QB}{QC}$ can be expressed in the form $\dfrac{a\sqrt{b}}{c}$ for positive integers $a,b,c$ with $\gcd (a,c)=1$ and $b$ squarefree. Determine $a+b+c$.
[i]Proposed by Vincent Huang[/i]
2002 Irish Math Olympiad, 2
$ (a)$ A group of people attends a party. Each person has at most three acquaintances in the group, and if two people do not know each other, then they have a common acquaintance in the group. What is the maximum possible number of people present?
$ (b)$ If, in addition, the group contains three mutual acquaintances, what is the maximum possible number of people?
1973 Canada National Olympiad, 7
Observe that
\[\frac{1}{1}= \frac{1}{2}+\frac{1}{2};\quad \frac{1}{2}=\frac{1}{3}+\frac{1}{6};\quad \frac{1}{3}=\frac{1}{4}+\frac{1}{12};\quad \frac{1}{4}= \frac{1}{5}+\frac{1}{20}. \]
State a general law suggested by these examples, and prove it.
Prove that for any integer $n$ greater than 1 there exist positive integers $i$ and $j$ such that
\[\frac{1}{n}= \frac{1}{i(i+1)}+\frac{1}{(i+1)(i+2)}+\frac{1}{(i+2)(i+3)}+\cdots+\frac{1}{j(j+1)}. \]
[hide="Remark."]
It seems that this is a two-part problem.
[/hide]
2008 IMC, 6
For a permutation $ \sigma\in S_n$ with $ (1,2,\dots,n)\mapsto(i_1,i_2,\dots,i_n)$, define
\[ D(\sigma) \equal{} \sum_{k \equal{} 1}^n |i_k \minus{} k|
\]
Let
\[ Q(n,d) \equal{} \left|\left\{\sigma\in S_n : D(\sigma) \equal{} d\right\}\right|
\]
Show that when $ d \geq 2n$, $ Q(n,d)$ is an even number.
1984 All Soviet Union Mathematical Olympiad, 387
The $x$ and $y$ figures satisfy a condition: for every $n\ge1$ the number $$xx...x6yy...y4$$ ($n$ times $x$ and $n$ times $y$) is a perfect square. Find all possible $x$ and $y$.
2015 AMC 10, 19
The isosceles right triangle $ABC$ has right angle at $C$ and area $12.5$. The rays trisecting $\angle{ACB}$ intersect $AB$ at $D$ and $E$. What is the area of $\triangle{CDE}$?
$\textbf{(A) }\frac{5\sqrt{2}}{3}\qquad\textbf{(B) }\frac{50\sqrt{3}-75}{4}\qquad\textbf{(C) }\frac{15\sqrt{3}}{8}\qquad\textbf{(D) }\frac{50-25\sqrt{3}}{2}\qquad\textbf{(E) }\frac{25}{6}$
1970 Canada National Olympiad, 1
Find all number triples $(x,y,z)$ such that when any of these numbers is added to the product of the other two, the result is 2.
2014 ELMO Shortlist, 1
In a non-obtuse triangle $ABC$, prove that
\[ \frac{\sin A \sin B}{\sin C} + \frac{\sin B \sin C}{\sin A} + \frac{\sin C \sin A}{ \sin B} \ge \frac 52. \][i]Proposed by Ryan Alweiss[/i]
2012 Kazakhstan National Olympiad, 2
Let $ABCD$ be an inscribed quadrilateral, in which $\angle BAD<90$. On the rays $AB$ and $AD$ are selected points $K$ and $L$, respectively, such that$ KA = KD, LA = LB$. Let $N$ - the midpoint of $AC$.Prove that if $\angle BNC=\angle DNC $,so $\angle KNL=\angle BCD $
2022 China Northern MO, 3
Let $\{a_n\}$ be a sequence of positive terms such that $a_{n+1}=a_n+ \frac{n^2}{a_n}$ . Let $b_n =a_n-n$ .
(1) Are there infinitely many $n$ such that $b_n \ge 0$ ?
(2) Prove that there is a positive number $M$ such that $\sum^{\infty}_{n=3} \frac{b_n}{n+1}<M$.
2002 AMC 12/AHSME, 7
If an arc of $ 45^\circ$ on circle $ A$ has the same length as an arc of $ 30^\circ$ on circle $ B$, then the ratio of the area of circle $ A$ to the area of circle $ B$ is
$ \textbf{(A)}\ \frac {4}{9} \qquad \textbf{(B)}\ \frac {2}{3} \qquad \textbf{(C)}\ \frac {5}{6} \qquad \textbf{(D)}\ \frac {3}{2} \qquad \textbf{(E)}\ \frac {9}{4}$
1997 French Mathematical Olympiad, Problem 3
Let $C$ be a unit cube and let $p$ denote the orthogonal projection onto the plane. Find the maximum area of $p(C)$.
1949 Putnam, A5
How many roots of the equation $z^6 +6z +10=0$ lie in each quadrant of the complex plane?
1979 Chisinau City MO, 172
Show that in a right-angled triangle the bisector of the right angle divides into equal parts the angle between the altitude and the median, drawn from the same vertex.
2023 China Western Mathematical Olympiad, 8
In a grid of $100\times 100$ squares, there is a mouse on the top-left square, and there is a piece of cheese in the bottom-right square. The mouse wants to move to the bottom-right square to eat the cheese. For each step, the mouse can move from one square to an adjacent square (two squares are considered adjacent if they share a common edge). Now, any divider can be placed on the common edge of two adjacent squares such that the mouse cannot directly move between these two adjacent squares.
A placement of dividers is called "kind" if the mouse can still reach the cheese after the dividers are placed. Find the smallest positive integer $n$ such that, regardless of any "kind" placement of $2023$ dividers, the mouse can reach the cheese in at most $n$ steps.
2018 ASDAN Math Tournament, 9
Given $2017$ positive numbers $x_1,\dots,x_{2017}$ such that
$$\sum_{i=1}^{2017}x_i=\sum_{i=1}^{2017}\frac{1}{x_i}=2018,$$
compute the maximum possible value of $x_1+\frac{1}{x_1}$.
2011 IFYM, Sozopol, 7
Prove that for $\forall$ $k\geq 2$, $k\in \mathbb{N}$ there exist a natural number that could be presented as a sum of two, three … $k$ cubes of natural numbers.
2020 USMCA, 1
Find the sum of all positive integers $n$ such that $\frac{2020}{n^3 + n}$ is an integer.
2024 Abelkonkurransen Finale, 4a
The triangle $ABC$ with $AB < AC$ has an altitude $AD$. The points $E$ and $A$ lie on opposite sides of $BC$, with $E$ on the circumcircle of $ABC$. Furthermore, $AD = DE$ and $\angle ADO=\angle CDE$, where $O$ is the circumcentre of $ABC$. Determine $\angle BAC$.