This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1971 IMO Shortlist, 7

All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$. [b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length; [b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.

Estonia Open Senior - geometry, 2020.1.5

A circle $c$ with center $A$ passes through the vertices $B$ and $E$ of a regular pentagon $ABCDE$ . The line $BC$ intersects the circle $c$ for second time at point $F$. The point $G$ on the circle $c$ is chosen such that $| F B | = | FG |$ and $B \ne G$. Prove that the lines $AB, EF$ and $DG$ intersect at one point.

1999 India National Olympiad, 2

In a village $1998$ persons volunteered to clean up, for a fair, a rectangular field with integer sides and perimeter equla to $3996$ feet. For this purpose, the field was divided into $1998$ equal parts. If each part had an integer area, find the length and breadth of the field.

1978 IMO Longlists, 11

Find all natural numbers $n < 1978$ with the following property: If $m$ is a natural number, $1 < m < n$, and $(m, n) = 1$ (i.e., $m$ and $n$ are relatively prime), then $m$ is a prime number.

2006 Portugal MO, 6

Integers $1$ to $36$ are written in each "Neuro-Millions" bulletin. A bet on "Neuro-Millions" consists of choosing $6$ of these $36$ numbers. Then, $6$ numbers between $1$ and $36$ are drawn, and these constitute the key to "Neuro-MilhËœoes". A bet is awarded if it does not contain any of the key numbers. How many bets, at least, are necessary to guarantee a prize?

2002 Tournament Of Towns, 4

$x,y,z\in\left(0,\frac{\pi}{2}\right)$ are given. Prove that: \[ \frac{x\cos x+y\cos y+z\cos z}{x+y+z}\le \frac{\cos x+\cos y+\cos z}{3} \]

2021 Israel TST, 3

Consider a triangle $ABC$ and two congruent triangles $A_1B_1C_1$ and $A_2B_2C_2$ which are respectively similar to $ABC$ and inscribed in it: $A_i,B_i,C_i$ are located on the sides of $ABC$ in such a way that the points $A_i$ are on the side opposite to $A$, the points $B_i$ are on the side opposite to $B$, and the points $C_i$ are on the side opposite to $C$ (and the angle at A are equal to angles at $A_i$ etc.). The circumcircles of $A_1B_1C_1$ and $A_2B_2C_2$ intersect at points $P$ and $Q$. Prove that the line $PQ$ passes through the orthocenter of $ABC$.

2016 BMT Spring, 8

Let $(v_1, ..., v_{2^n})$ be the vertices of an $n$-dimensional hypercube. Label each vertex $v_i$ with a real number $x_i$. Label each edge of the hypercube with the product of labels of the two vertices it connects. Let $S$ be the sum of the labels of all the edges. Over all possible labelings, find the minimum possible value of $\frac{S}{x^2_1+ x^2_2+ ...+ x^2_n}$ in terms of $ n$. Note: an $n$ dimensional hypercube is a graph on $2^n$ vertices labeled labeled with the binary strings of length $n$, where two vertices have an edge between them if and only if their labels differ in exactly one place. For instance, the vertices $100$ and $101$ on the $3$ dimensional hypercube are connected, but the vertices $100$ and $111$ are not.

2019 Macedonia National Olympiad, 3

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2006 Cuba MO, 2

$n$ people numbered from $1$ to $n$ are arranged in a row. An [i]acceptable movement[/i] consists of each person changing at most once its place with another or remains in its place. For example $\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|} \hline initial position & 1 & 2 & 3 & 4 & 5 & 6 & ... & n-2 & n-1 & n \\ \hline final position & 2 & 1 & 3 & 6 & 5 & 4 & ... & n & n-1 & n-2 \\ \hline \end{tabular}$ is an a[i]cceptable movement[/i]. Is it possible that starting from the position $\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|} \hline 1 & 2 & 3 & 4 & 5 & 6 & ... & n-2 & n-1 & n \\ \hline \end{tabular}$ to reach to $\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|} \hline n & 1 & 2 & 3 & 4 & 5 & 6 & ... & n-2 & n-1 \\ \hline \end{tabular}$ through two [i]acceptable movements[/i]?

2015 BMT Spring, 12

How many possible arrangements of bishops are there on a $8 \times 8$ chessboard such that no bishop threatens a square on which another lies and the maximum number of bishops are used? (Note that a bishop threatens any square along a diagonal containing its square.)

2004 AMC 12/AHSME, 13

If $ f(x) \equal{} ax \plus{} b$ and $ f^{ \minus{} 1}(x) \equal{} bx \plus{} a$ with $ a$ and $ b$ real, what is the value of $ a \plus{} b$? $ \textbf{(A)} \minus{} \!2 \qquad \textbf{(B)} \minus{} \!1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 2$

2021 Latvia TST, 1.1

Tags: algebra
Given real numbers $x,y,z,a$ satisfying: $$ x+y+z = a$$ $$ \frac{1}{x}+\frac{1}{y}+\frac{1}{z} = \frac{1}{a} $$ Prove that at least one of the numbers $x,y,z$ is equal to $a$.

2002 USAMTS Problems, 1

Tags:
The integer $n$, between 10000 and 99999, is $abcde$ when written in decimal notation. The digit $a$ is the remainder when $n$ is divided by 2, the digit $b$ is the remainder when $n$ is divided by 3, the digit $c$ is the remainder when $n$ is divided by 4, the digit $d$ is the remainder when $n$ is divied by 5, and the digit $e$ is the reminader when $n$ is divided by 6. Find $n$.

2018 Sharygin Geometry Olympiad, 6

Let $ABCD$ be a circumscribed quadrilateral. Prove that the common point of the diagonals, the incenter of triangle $ABC$ and the centre of excircle of triangle $CDA$ touching the side $AC$ are collinear.

2011 Polish MO Finals, 1

Find all integers $n\geq 1$ such that there exists a permutation $(a_1,a_2,...,a_n)$ of $(1,2,...,n)$ such that $a_1+a_2+...+a_k$ is divisible by $k$ for $k=1,2,...,n$

2023 4th Memorial "Aleksandar Blazhevski-Cane", P2

Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all functions $f:\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that for all $x,y>0$ we have $$f(xy+f(x))=yf(x)+x.$$ [i]Proposed by Nikola Velov[/i]

2014 India IMO Training Camp, 3

In how many ways rooks can be placed on a $8$ by $8$ chess board such that every row and every column has at least one rook? (Any number of rooks are available,each square can have at most one rook and there is no relation of attacking between them)

2011 Postal Coaching, 4

Consider $2011^2$ points arranged in the form of a $2011 \times 2011$ grid. What is the maximum number of points that can be chosen among them so that no four of them form the vertices of either an isosceles trapezium or a rectangle whose parallel sides are parallel to the grid lines?

2016 Switzerland Team Selection Test, Problem 6

Prove that for every nonnegative integer $n$, the number $7^{7^{n}}+1$ is the product of at least $2n+3$ (not necessarily distinct) primes.

1984 IMO Shortlist, 4

Let $ d$ be the sum of the lengths of all the diagonals of a plane convex polygon with $ n$ vertices (where $ n>3$). Let $ p$ be its perimeter. Prove that: \[ n\minus{}3<{2d\over p}<\Bigl[{n\over2}\Bigr]\cdot\Bigl[{n\plus{}1\over 2}\Bigr]\minus{}2,\] where $ [x]$ denotes the greatest integer not exceeding $ x$.

2022 Adygea Teachers' Geometry Olympiad, 3

The incircle of triangle $ABC$ touches its sides at points $A'$, $B'$, $C'$. $I$ is its center. Straight line $B'I$ intersects segment $A'C'$ at point $P$. Prove that straight line $BP$ passes through the midpoint of $AC$.

2012 Bosnia And Herzegovina - Regional Olympiad, 1

Solve equation $$x^2-\sqrt{a-x}=a$$ where $x$ is real number and $a$ is real parameter

2018 Peru Cono Sur TST, 8

Tags: gcd , number theory
For each pair of positive integers $m$ and $n$, we define $f_m(n)$ as follows: $$ f_m(n) = \gcd(n, d_1) + \gcd(n, d_2) + \cdots + \gcd(n, d_k), $$ where $1 = d_1 < d_2 < \cdots < d_k = m$ are all the positive divisors of $m$. For example, $f_4(6) = \gcd(6,1) + \gcd(6,2) + \gcd(6,4) = 5$. $a)\:$ Find all positive integers $n$ such that $f_{2017}(n) = f_n(2017)$. $b)\:$ Find all positive integers $n$ such that $f_6(n) = f_n(6)$.

2023 Puerto Rico Team Selection Test, 4

A frog started from the origin of the coordinate plane and made $3$ jumps. Each time, the frog jumped a distance of $5$ units and landed on a point with integer coordinates. How many different position possibilities end of the frog there?