This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 Belarus Team Selection Test, 4.3

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

2019 Durer Math Competition Finals, 6

Find the smallest multiple of $81$ that only contains the digit $1$. How many $ 1$’s does it contain?

2023 Swedish Mathematical Competition, 5

(a) Let $x$ and $y$ be integers. Prove that $x = y$ if $x^n \equiv y^n$ mod $n$ for all positive integers $n$. (b) For which pairs of integers $(x, y)$ are there infinitely many positive integers $n$ such that $x^n \equiv y^n$ mod $n$?

2022 Stanford Mathematics Tournament, 5

Tags:
A net for hexagonal pyramid is constructed by placing a triangle with side lengths $x$, $x$, and $y$ on each side of a regular hexagon with side length $y$. What is the maximum volume of the pyramid formed by the net if $x+y=20$?

2016 China Northern MO, 8

Set $A=\{1,2,\cdots,n\}$. If there exists nonempty sets $B,C$, such that $B\cap C=\varnothing,B\cup C=A$. Sum of Squares of all elements in $B$ is $M$, Sum of Squares of all elements in $C$ is $N$, $M-N=2016$. Find the minimum value of $n$.

1985 IMO Longlists, 54

Set $S_n = \sum_{p=1}^n (p^5+p^7)$. Determine the greatest common divisor of $S_n$ and $S_{3n}.$

2007 Thailand Mathematical Olympiad, 5

A triangle $\vartriangle ABC$ has $\angle A = 90^o$, and a point $D$ is chosen on $AC$. Point $F$ is the foot of altitude from $A$ to $BC$. Suppose that $BD = DC = CF = 2$. Compute $AC$.

2010 Belarus Team Selection Test, 4.2

Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram. Prove that $GR=GS$. [i]Proposed by Hossein Karke Abadi, Iran[/i]

1961 IMO, 1

Solve the system of equations: \[ x+y+z=a \] \[ x^2+y^2+z^2=b^2 \] \[ xy=z^2 \] where $a$ and $b$ are constants. Give the conditions that $a$ and $b$ must satisfy so that $x,y,z$ are distinct positive numbers.

2022 MIG, 24

Tags:
Cows Alpha and Beta are tied by eight-meter ropes, on the midpoints of adjacent sides of a rectangular fence. Both cows are outside the fence; Alpha can wander in a region with an area of $34\pi$ square meters and Beta can wander in a region with an area of $40\pi$ square meters. What is the area enclosed by the rectangular fence? $\textbf{(A) }45\qquad\textbf{(B) }48\qquad\textbf{(C) }96\qquad\textbf{(D) }120\qquad\textbf{(E) }144$

2009 Korea Junior Math Olympiad, 8

Let a, b, c, d, and e be positive integers. Are there any solutions to $a^2+b^3+c^5+d^7=e^{11}$?

2019 Irish Math Olympiad, 5

Let $M$ be a point on the side $BC$ of triangle $ABC$ and let $P$ and $Q$ denote the circumcentres of triangles $ABM$ and $ACM$ respectively. Let $L$ denote the point of intersection of the extended lines $BP$ and $CQ$ and let $K$ denote the reflection of $L$ through the line $PQ$. Prove that $M, P, Q$ and $K$ all lie on the same circle.

2013 Miklós Schweitzer, 11

[list] (a) Consider an ellipse in the plane. Prove that there exists a Riemannian metric which is defined on the whole plane, and with respect to which the ellipse is a geodesic. Prove that the Gaussian curvature of any such Riemannian metric takes a positive value. (b) Consider two nonintersecting, simple closed smooth curves in the plane. Prove that if there is a Riemmanian metric defined on the whole plane and the two curves are geodesics of that metric, then the Gaussian curvature of the metric vanishes somewhere. [/list] [i]Proposed by Tran Quoc Binh[/i]

2006 Rioplatense Mathematical Olympiad, Level 3, 3

The numbers $1, 2,\ldots, 2006$ are written around the circumference of a circle. A [i]move[/i] consists of exchanging two adjacent numbers. After a sequence of such moves, each number ends up $13$ positions to the right of its initial position. lf the numbers $1, 2,\ldots, 2006$ are partitioned into $1003$ distinct pairs, then show that in at least one of the moves, the two numbers of one of the pairs were exchanged.

Kyiv City MO Seniors 2003+ geometry, 2011.11.4.1

Inside the parallelogram $ABCD$ are the circles $\gamma_1$ and $\gamma_2$, which are externally tangent at the point $K$. The circle $\gamma_1$ touches the sides $AD$ and $AB$ of the parallelogram, and the circle $\gamma_2$ touches the sides $CD$ and $CB$. Prove that the point $K$ lies on the diagonal $AC$ of the paralelogram.

2022 Stanford Mathematics Tournament, 1

Tags:
Compute \[\int_0^{10}(x-5)+(x-5)^2+(x-3)^2dx.\]

2024 Azerbaijan IZhO TST, 3

Tags: geometry
In a triangle $ABC$, $I$ is the incenter. Line $CI$ intersects circumcircle of $ABC$ at $L$, and it is given that $CI=2IL$. $M;N$ are points chosen on $AB$ such that $\angle AIM=\angle BIN=90$. Prove that $AB=2MN$

2018 Thailand TST, 2

For finite sets $A,M$ such that $A \subseteq M \subset \mathbb{Z}^+$, we define $$f_M(A)=\{x\in M \mid x\text{ is divisible by an odd number of elements of }A\}.$$ Given a positive integer $k$, we call $M$ [i]k-colorable[/i] if it is possible to color the subsets of $M$ with $k$ colors so that for any $A \subseteq M$, if $f_M(A)\neq A$ then $f_M(A)$ and $A$ have different colors. Determine the least positive integer $k$ such that every finite set $M \subset\mathbb{Z}^+$ is k-colorable.

2023 AMC 12/AHSME, 25

There is a unique sequence of integers $a_1, a_2, \cdots a_{2023}$ such that $$ \tan2023x = \frac{a_1 \tan x + a_3 \tan^3 x + a_5 \tan^5 x + \cdots + a_{2023} \tan^{2023} x}{1 + a_2 \tan^2 x + a_4 \tan^4 x \cdots + a_{2022} \tan^{2022} x} $$ whenever $\tan 2023x$ is defined. What is $a_{2023}?$ $\textbf{(A) } -2023 \qquad\textbf{(B) } -2022 \qquad\textbf{(C) } -1 \qquad\textbf{(D) } 1 \qquad\textbf{(E) } 2023$

2001 Slovenia National Olympiad, Problem 4

Cross-shaped tiles are to be placed on a $8\times8$ square grid without overlapping. Find the largest possible number of tiles that can be placed. [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvMy8zL2EyY2Q4MDcyMWZjM2FmZGFhODkxYTk5ZmFiMmMwNzk0MzZmYmVjLnBuZw==&rn=U2NyZWVuIFNob3QgMjAyMS0wNC0wNyBhdCA2LjIzLjU4IEFNLnBuZw[/img]

2016 MMATHS, 1

Tags: geometry
Let unit blocks be unit squares in the coordinate plane with vertices at lattice points (points $(a, b)$ such that $a$ and $b$ are both integers). Prove that a circle with area $\pi$ can cover parts of no more than $9$ unit blocks. The circle below covers part of $8$ unit blocks. [img]https://cdn.artofproblemsolving.com/attachments/4/4/43da9abed06d0feba94012ba68c177e3c2835b.png[/img]

2012 Online Math Open Problems, 12

Tags:
Let $a_1,a_2,\ldots$ be a sequence defined by $a_1 = 1$ and for $n\ge1$, $a_{n+1} = \sqrt{a_n^2 -2a_n + 3} + 1$. Find $a_{513}$. [i]Ray Li.[/i]

1980 IMO, 23

Let $a, b$ be positive real numbers, and let $x, y$ be complex numbers such that $|x| = a$ and $|y| = b$. Find the minimal and maximal value of \[\left|\frac{x + y}{1 + x\overline{y}}\right|\]

1997 Brazil Team Selection Test, Problem 2

We say that a subset $A$ of $\mathbb N$ is good if for some positive integer $n$, the equation $x-y=n$ admits infinitely many solutions with $x,y\in A$. If $A_1,A_2,\ldots,A_{100}$ are sets whose union is $\mathbb N$, prove that at least one of the $A_i$s is good.

2018 May Olympiad, 5

In each square of a $5 \times 5$ board one of the numbers $2, 3, 4$ or $5$ is written so that the the sum of all the numbers in each row, in each column and on each diagonal is always even. How many ways can we fill the board? Clarification. A $5\times 5$ board has exactly $18$ diagonals of different sizes. In particular, the corners are size $ 1$ diagonals.