Found problems: 85335
2016 EGMO, 5
Let $k$ and $n$ be integers such that $k\ge 2$ and $k \le n \le 2k-1$. Place rectangular tiles, each of size $1 \times k$, or $k \times 1$ on a $n \times n$ chessboard so that each tile covers exactly $k$ cells and no two tiles overlap. Do this until no further tile can be placed in this way. For each such $k$ and $n$, determine the minimum number of tiles that such an arrangement may contain.
2010 N.N. Mihăileanu Individual, 4
If $ p $ is an odd prime, then the following characterization holds.
$$ 2^{p-1}\equiv 1\pmod{p^2}\iff \sum_{2=q}^{(p-1)/2} q^{p-2}\equiv -1\pmod p $$
[i]Marius Cavachi[/i]
2017 IFYM, Sozopol, 2
Prove that all positive rational numbers can be written as a fraction, which numerator and denominator are products of factorials of not necessarily different prime numbers. For example
$\frac{10}{9}=\frac{2!5!}{3!3!3!}$.
2004 China Team Selection Test, 1
Given integer $ n$ larger than $ 5$, solve the system of equations (assuming $x_i \geq 0$, for $ i=1,2, \dots n$):
\[ \begin{cases} \displaystyle x_1+ \phantom{2^2} x_2+ \phantom{3^2} x_3 + \cdots + \phantom{n^2} x_n &= n+2, \\ x_1 + 2\phantom{^2}x_2 + 3\phantom{^2}x_3 + \cdots + n\phantom{^2}x_n &= 2n+2, \\ x_1 + 2^2x_2 + 3^2 x_3 + \cdots + n^2x_n &= n^2 + n +4, \\ x_1+ 2^3x_2 + 3^3x_3+ \cdots + n^3x_n &= n^3 + n + 8. \end{cases} \]
Kyiv City MO Juniors 2003+ geometry, 2020.8.5
Given a triangle $ABC, O$ is the center of the circumcircle, $M$ is the midpoint of $BC, W$ is the second intersection of the bisector of the angle $C$ with this circle. A line parallel to $BC$ passing through $W$, intersects$ AB$ at the point $K$ so that $BK = BO$. Find the measure of angle $WMB$.
(Anton Trygub)
2014 Czech-Polish-Slovak Match, 4
Let $ABC$ be a triangle, and let $P$ be the midpoint of $AC$. A circle intersects $AP, CP, BC, AB$ sequentially at their inner points $K, L, M, N$. Let $S$ be the midpoint of $KL$. Let also $2 \cdot | AN |\cdot |AB |\cdot |CL | = 2 \cdot | CM | \cdot| BC | \cdot| AK| = | AC | \cdot| AK |\cdot |CL |.$ Prove that if $P\ne S$, then the intersection of $KN$ and $ML$ lies on the perpendicular bisector of the $PS$.
(Jan Mazák)
Indonesia Regional MO OSP SMA - geometry, 2016.4
Let $PA$ and $PB$ be the tangent of a circle $\omega$ from a point $P$ outside the circle. Let $M$ be any point on $AP$ and $N$ is the midpoint of segment $AB$. $MN$ cuts $\omega$ at $C$ such that $N$ is between $M$ and $C$. Suppose $PC$ cuts $\omega$ at $D$ and $ND$ cuts $PB$ at $Q$. Prove $MQ$ is parallel to $AB$.
1998 Belarus Team Selection Test, 3
Find all continuous functions $f: R \to R$ such that $g(g(x)) = g(x)+2x$ for all real $x$.
2014 SDMO (Middle School), 2
A dog has three trainers:
[list]
[*]The first trainer gives him a treat right away.
[*]The second trainer makes him jump five times, then gives him a treat.
[*]The third trainer makes him jump three times, then gives him no treat.
[/list]
The dog will keep picking trainers with equal probability until he gets a treat. (The dog's memory isn't so good, so he might pick the third trainer repeatedly!) What is the expected number of times the dog will jump before getting a treat?
1997 Swedish Mathematical Competition, 2
Let $D$ be the point on side $AC$ of a triangle $ABC$ such that $BD$ bisects $\angle B$, and $E$ be the point on side $AB$ such that $3\angle ACE = 2\angle BCE$. Suppose that $BD$ and $CE$ intersect at a point $P$ with $ED = DC = CP$. Determine the angles of the triangle.
2009 Stanford Mathematics Tournament, 4
Find all values of $x$ for which $f(x)+xf\left(\frac{1}{x}\right)=x$ for any function $f(x)$
IMSC 2024, 5
Let $\mathbb{R}_{>0}$ be the set of all positive real numbers. Find all strictly monotone (increasing or decreasing) functions $f:\mathbb{R}_{>0} \to \mathbb{R}$ such that there exists a two-variable polynomial $P(x, y)$ with real coefficients satisfying
$$
f(xy)=P(f(x), f(y))
$$
for all $x, y\in\mathbb{R}_{>0}$.\\
[i]Proposed by Navid Safaei, Iran[/i]
2019 Adygea Teachers' Geometry Olympiad, 4
From which two statements about the trapezoid follows the third:
1) the trapezoid is tangential,
2) the trapezoid is right,
3) its area is equal to the product of the bases?
Novosibirsk Oral Geo Oly VII, 2022.2
A quadrilateral is given, in which the lengths of some two sides are equal to $1$ and $4$. Also, the diagonal of length $2$ divides it into two isosceles triangles. Find the perimeter of this quadrilateral.
2017 Sharygin Geometry Olympiad, P19
Let cevians $AA', BB'$ and $CC'$ of triangle $ABC$ concur at point $P.$ The circumcircle of triangle $PA'B'$ meets $AC$ and $BC$ at points $M$ and $N$ respectively, and the circumcircles of triangles $PC'B'$ and $PA'C'$ meet $AC$ and $BC$ for the second time respectively at points $K$ and $L$. The line $c$ passes through the midpoints of segments $MN$ and $KL$. The lines $a$ and $b$ are defined similarly. Prove that $a$, $b$ and $c$ concur.
2009 Costa Rica - Final Round, 3
Let triangle $ ABC$ acutangle, with $ m \angle ACB\leq\ m \angle ABC$. $ M$ the midpoint of side $ BC$ and $ P$ a point over the side $ MC$. Let $ C_{1}$ the circunference with center $ C$. Let $ C_{2}$ the circunference with center $ B$. $ P$ is a point of $ C_{1}$ and $ C_{2}$. Let $ X$ a point on the opposite semiplane than $ B$ respecting with the straight line $ AP$; Let $ Y$ the intersection of side $ XB$ with $ C_{2}$ and $ Z$ the intersection of side $ XC$ with $ C_{1}$. Let $ m\angle PAX \equal{} \alpha$ and $ m\angle ABC \equal{} \beta$. Find the geometric place of $ X$ if it satisfies the following conditions:
$ (a) \frac {XY}{XZ} \equal{} \frac {XC \plus{} CP}{XB \plus{} BP}$
$ (b) \cos(\alpha) \equal{} AB\cdot \frac {\sin(\beta )}{AP}$
2021 Alibaba Global Math Competition, 14
Let $f$ be a smooth function on $\mathbb{R}^n$, denote by $G_f=\{(x,f(x)) \in \mathbb{R}^{n+1}: x \in \mathbb{R}^n\}$. Let $g$ be the restriction of the Euclidean metric on $G_f$.
(1) Prove that $g$ is a complete metric.
(2) If there exists $\Lambda>0$, such that $-\Lambda I_n \le \text{Hess}(f) \le \Lambda I_n$, where $I_n$ is the unit matrix of order $n$, and $\text{Hess}8f)$ is the Hessian matrix of $f$, then the injectivity radius of $(G_f,g)$ is at least $\frac{\pi}{2\Lambda}$.
2021 EGMO, 3
Let $ABC$ be a triangle with an obtuse angle at $A$. Let $E$ and $F$ be the intersections of the external bisector of angle $A$ with the altitudes of $ABC$ through $B$ and $C$ respectively. Let $M$ and $N$ be the points on the segments $EC$ and $FB$ respectively such that $\angle EMA = \angle BCA$ and $\angle ANF = \angle ABC$. Prove that the points $E, F, N, M$ lie on a circle.
2007 Hungary-Israel Binational, 1
A given rectangle $ R$ is divided into $mn$ small rectangles by straight lines parallel to its sides. (The distances between the parallel lines may not be equal.) What is the minimum number of appropriately selected rectangles’ areas that should be known in order to determine the area of $ R$?
2017 Sharygin Geometry Olympiad, P24
Two tetrahedrons are given. Each two faces of the same tetrahedron are not similar, but each face of the first tetrahedron is similar to some face of the second one. Does this yield that these tetrahedrons are similar?
2011 Iran MO (3rd Round), 6
$a$ is an integer and $p$ is a prime number and we have $p\ge 17$. Suppose that $S=\{1,2,....,p-1\}$ and $T=\{y|1\le y\le p-1,ord_p(y)<p-1\}$. Prove that there are at least $4(p-3)(p-1)^{p-4}$ functions $f:S\longrightarrow S$ satisfying
$\sum_{x\in T} x^{f(x)}\equiv a$ $(mod$ $p)$.
[i]proposed by Mahyar Sefidgaran[/i]
2011 Purple Comet Problems, 16
Evaluate $1^3-2^3+3^3-4^3+5^3-\cdots+101^3$.
2020 CMIMC Geometry, 10
Four copies of an acute scalene triangle $\mathcal T$, one of whose sides has length $3$, are joined to form a tetrahedron with volume $4$ and surface area $24$. Compute the largest possible value for the circumradius of $\mathcal T$.
2008 ITest, 3
Michael plays catcher for his school's baseball team. He has always been a great player behind the plate, but this year as a junior, Michael's offense is really improving. His batting average is $.417$ after six games, and the team is $6-0$ (six wins and no losses). They are off to their best start in years.
On the way home from their sixth game, Michael notes to his father that the attendance seems to be increasing due to the team's great start, "There were $181$ people at the first game, then $197$ at the second, $203$ the third, $204$ the fourth, $212$ at the fifth, and there were $227$ at today's game." Just then, Michael's genius younger brother Tony, just seven-years-old, computes the average attendance of the six games. What is their average?
2012 Argentina National Olympiad Level 2, 2
In a football tournament with $n \geqslant 4$ teams, each pair of teams played against each other exactly once. In the final table, the scores of the teams are $n$ consecutive numbers. Find the maximum possible score of the winner of the tournament.
[b]Note:[/b] A victory gives $3$ points, a draw gives $1$ point and a loss gives $0$ points.