This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2013 Princeton University Math Competition, 2

Tags:
Find all pairs of positive integers $(a,b)$ such that: \[\dfrac{a^3+4b}{a+2b^2+2a^2b}\] is a positive integer.

2007 IMO Shortlist, 4

Consider five points $ A$, $ B$, $ C$, $ D$ and $ E$ such that $ ABCD$ is a parallelogram and $ BCED$ is a cyclic quadrilateral. Let $ \ell$ be a line passing through $ A$. Suppose that $ \ell$ intersects the interior of the segment $ DC$ at $ F$ and intersects line $ BC$ at $ G$. Suppose also that $ EF \equal{} EG \equal{} EC$. Prove that $ \ell$ is the bisector of angle $ DAB$. [i]Author: Charles Leytem, Luxembourg[/i]

1996 Romania Team Selection Test, 16

Let $ n\geq 3 $ be an integer and let $ \mathcal{S} \subset \{1,2,\ldots, n^3\} $ be a set with $ 3n^2 $ elements. Prove that there exist nine distinct numbers $ a_1,a_2,\ldots,a_9 \in \mathcal{S} $ such that the following system has a solution in nonzero integers: \begin{eqnarray*} a_1x + a_2y +a_3 z &=& 0 \\ a_4x + a_5 y + a_6 z &=& 0 \\ a_7x + a_8y + a_9z &=& 0. \end{eqnarray*} [i]Marius Cavachi[/i]

2016 Indonesia TST, 1

Tags: geometry , triangle
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.

2016 Japan MO Preliminary, 1

Calculate the value of $\sqrt{\dfrac{11^4+100^4+111^4}{2}}$ and answer in the form of an integer.

2019 Belarusian National Olympiad, 10.5

Find all non-constant polynomials $P(x)$ and $Q(x)$ with real coefficients satisfying the equality $P(Q(x))=P(x)Q(x)-P(x)$. [i](I. Voronovich)[/i]

2021 Bolivia Ibero TST, 2

Let $f: \mathbb Z^+ \to \mathbb Z$ be a function such that [b]a)[/b] $f(p)=1$ for every prime $p$. [b]b)[/b] $f(xy)=xf(y)+yf(x)$ for every pair of positive integers $x,y$ Find the least number $n \ge 2021$ such that $f(n)=n$

2010 Contests, 3

Let $ABCD$ be a convex quadrilateral. such that $\angle CAB = \angle CDA$ and $\angle BCA = \angle ACD$. If $M$ be the midpoint of $AB$, prove that $\angle BCM = \angle DBA$.

2016 Sharygin Geometry Olympiad, P1

A trapezoid $ABCD$ with bases $AD$ and $BC$ is such that $AB = BD$. Let $M$ be the midpoint of $DC$. Prove that $\angle MBC$ = $\angle BCA$.

2012 Serbia National Math Olympiad, 1

Let $ABCD$ be a parallelogram and $P$ be a point on diagonal $BD$ such that $\angle PCB=\angle ACD$. Circumcircle of triangle $ABD$ intersects line $AC$ at points $A$ and $E$. Prove that \[\angle AED=\angle PEB.\]

2019 PUMaC Geometry A, 7

Tags: geometry
Let $ABCD$ be a trapezoid such that $AB||CD$ and let $P=AC\cap BD,AB=21,CD=7,AD=13,[ABCD]=168.$ Let the line parallel to $AB$ through $P$ intersect the circumcircle of $BCP$ in $X.$ Circumcircles of $BCP$ and $APD$ intersect at $P,Y.$ Let $XY\cap BC=Z.$ If $\angle ADC$ is obtuse, then $BZ=\frac{a}{b},$ where $a,b$ are coprime positive integers. Compute $a+b.$

DMM Team Rounds, 1999

[b]p1.[/b] The least prime factor of $a$ is $3$, the least prime factor of $b$ is $7$. Find the least prime factor of $a + b$. [b]p2.[/b] In a Cartesian coordinate system, the two tangent lines from $P = (39, 52)$ meet the circle defined by $x^2 + y^2 = 625$ at points $Q$ and $R$. Find the length $QR$. [b]p3.[/b] For a positive integer $n$, there is a sequence $(a_0, a_1, a_2,..., a_n)$ of real values such that $a_0 = 11$ and $(a_k + a_{k+1}) (a_k - a_{k+1}) = 5$ for every $k$ with $0 \le k \le n-1$. Find the maximum possible value of $n$. (Be careful that your answer isn’t off by one!) [b]p4.[/b] Persons $A$ and $B$ stand at point $P$ on line $\ell$. Point $Q$ lies at a distance of $10$ from point $P$ in the direction perpendicular to $\ell$. Both persons intially face towards $Q$. Person $A$ walks forward and to the left at an angle of $25^o$ with $\ell$, when he is again at a distance of $10$ from point $Q$, he stops, turns $90^o$ to the right, and continues walking. Person $B$ walks forward and to the right at an angle of $55^o$ with line $\ell$, when he is again at a distance of $10$ from point $Q$, he stops, turns $90^o$ to the left, and continues walking. Their paths cross at point $R$. Find the distance $PR$. [b]p5.[/b] Compute $$\frac{lcm (1,2, 3,..., 200)}{lcm (102, 103, 104, ..., 200)}.$$ [b]p6.[/b] There is a unique real value $A$ such that for all $x$ with $1 < x < 3$ and $x \ne 2$, $$\left| \frac{A}{x^2-x - 2} +\frac{1}{x^2 - 6x + 8} \right|< 1999.$$ Compute $A$. [b]p7.[/b] Nine poles of height $1, 2,..., 9$ are placed in a line in random order. A pole is called [i]dominant [/i] if it is taller than the pole immediately to the left of it, or if it is the pole farthest to the left. Count the number of possible orderings in which there are exactly $2$ dominant poles. [b]p8.[/b] $\tan (11x) = \tan (34^o)$ and $\tan (19x) = \tan (21^o)$. Compute $\tan (5x)$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 China Second Round, 6

Let $a,b,c $ be the lengths of the three sides of a triangle and $a,b$ be the two roots of the equation $ax^2-bx+c=0 $$ (a<b) . $ Find the value range of $ a+b-c .$

2004 Germany Team Selection Test, 2

Let $d$ be a diameter of a circle $k$, and let $A$ be an arbitrary point on this diameter $d$ in the interior of $k$. Further, let $P$ be a point in the exterior of $k$. The circle with diameter $PA$ meets the circle $k$ at the points $M$ and $N$. Find all points $B$ on the diameter $d$ in the interior of $k$ such that \[\measuredangle MPA = \measuredangle BPN \quad \text{and} \quad PA \leq PB.\] (i. e. give an explicit description of these points without using the points $M$ and $N$).

2000 AMC 12/AHSME, 2

Tags:
$ 2000(2000^{2000}) \equal{}$ $ \textbf{(A)}\ 2000^{2001} \qquad \textbf{(B)}\ 4000^{2000} \qquad \textbf{(C)}\ 2000^{4000}\qquad \textbf{(D)}\ 4,000,000^{2000} \qquad \textbf{(E)}\ 2000^{4,000,000}$

2012 Baltic Way, 19

Show that $n^n + (n + 1)^{n + 1}$ is composite for infinitely many positive integers $n$.

1965 IMO Shortlist, 2

Consider the sytem of equations \[ a_{11}x_1+a_{12}x_2+a_{13}x_3 = 0 \]\[a_{21}x_1+a_{22}x_2+a_{23}x_3 =0\]\[a_{31}x_1+a_{32}x_2+a_{33}x_3 = 0 \] with unknowns $x_1, x_2, x_3$. The coefficients satisfy the conditions: a) $a_{11}, a_{22}, a_{33}$ are positive numbers; b) the remaining coefficients are negative numbers; c) in each equation, the sum ofthe coefficients is positive. Prove that the given system has only the solution $x_1=x_2=x_3=0$.

1997 Moscow Mathematical Olympiad, 6

Tags:
Consider the sequence formed by the first digits of the powers of $5$:$$1,5,2,1,6,...$$ Prove any segment in this sequence, when written in reversed order, will be encountered in the sequence of the first digits of the powers of $2:$ $$1,2,4,8,1,3,6,1...$$

2008 Macedonia National Olympiad, 4

We call an integer $ n > 1$ [i]good[/i] if, for any natural numbers $ 1 \le b_1, b_2, \ldots , b_{n\minus{}1} \le n \minus{} 1$ and any $ i \in \{0, 1, \ldots , n \minus{} 1\}$, there is a subset $ I$ of $ \{1, \ldots , n \minus{} 1\}$ such that $ \sum_{k\in I} b_k \equiv i \pmod n$. (The sum over the empty set is zero.) Find all good numbers.

2012 Online Math Open Problems, 18

The sum of the squares of three positive numbers is $160$. One of the numbers is equal to the sum of the other two. The difference between the smaller two numbers is $4.$ What is the difference between the cubes of the smaller two numbers? [i]Author: Ray Li[/i] [hide="Clarification"]The problem should ask for the positive difference.[/hide]

1997 Brazil Team Selection Test, Problem 4

Consider an $N\times N$ matrix, where $N$ is an odd positive integer, such that all its entries are $-1,0$ or $1$. Consider the sum of the numbers in every line and every column. Prove that at least two of the $2N$ sums are equal.

2003 Korea - Final Round, 1

Some computers of a computer room have a following network. Each computers are connected by three cable to three computers. Two arbitrary computers can exchange data directly or indirectly (through other computers). Now let's remove $K$ computers so that there are two computers, which can not exchange data, or there is one computer left. Let $k$ be the minimum value of $K$. Let's remove $L$ cable from original network so that there are two computers, which can not exchange data. Let $l$ be the minimum value of $L$. Show that $k=l$.

2003 Austria Beginners' Competition, 4

Prove that every rectangle circumscribed by a square is itself a square. (A rectangle is circumscribed by a square if there is exactly one corner point of the square on each side of the rectangle.)

2015 Princeton University Math Competition, 7

Tags:
Charlie noticed his golden ticket was golden in two ways! In addition to being gold, it was a rectangle whose side lengths had ratio the golden ratio $\varphi = \tfrac{1+\sqrt{5}}{2}$. He then folds the ticket so that two opposite corners (vertices connected by a diagonal) coincide and makes a sharp crease (the ticket folds just as any regular piece of paper would). The area of the resulting shape can be expressed as $a + b \varphi$. What is $\tfrac{b}{a}$?

2005 iTest, 38

LeBron James and Carmelo Anthony play a game of one-on-one basketball where the first player to $3$ points or more wins. LeBron James has a $20\%$ chance of making a $3$-point shot; Carmelo has a $10\%$ chance of making a $3$-pointer. LeBron has a $40\%$ chance of making a $2$-point shot from anywhere inside the $3$-point line (excluding dunks, which are also worth $2$ points); Carmelo has a $52\%$ chance of making a $ 2$-point shot from anywhere inside the 3-point line (excluding dunks). LeBron has a $90\%$ chance of dunking on Carmelo; Carmelo has a $95\%$ chance of dunking on LeBron. If each player has $3$ possessions to try to win, LeBron James goes first, and both players follow a rational strategy to try to win, what is the probability that Carmelo Anthony wins the game?