Found problems: 85335
1978 Canada National Olympiad, 3
Determine the largest real number $z$ such that
\begin{align*}
x + y + z = 5 \\
xy + yz + xz = 3
\end{align*}
and $x$, $y$ are also real.
2009 Hungary-Israel Binational, 2
Denote the three real roots of the cubic $ x^3 \minus{} 3x \minus{} 1 \equal{} 0$ by $ x_1$, $ x_2$, $ x_3$ in order of increasing magnitude. (You may assume that the equation in fact has three distinct real roots.) Prove that $ x_3^2 \minus{} x_2^2 \equal{} x_3 \minus{} x_1$.
2025 VJIMC, 3
Let us call a sequence $(b_1, b_2, \ldots)$ of positive integers fast-growing if $b_{n+1} \geq b_n + 2$ for all $n \geq 1$. Also, for a sequence $a = (a(1), a(2), \ldots)$ of real numbers and a sequence $b = (b_1, b_2, \ldots)$ of positive integers, let us denote
\[
S(a, b) = \sum_{n=1}^{\infty} \left| a(b_n) + a(b_n + 1) + \cdots + a(b_{n+1} - 1) \right|.
\]
a) Do there exist two fast-growing sequences $b = (b_1, b_2, \ldots)$, $c = (c_1, c_2, \ldots)$ such that for every sequence $a = (a(1), a(2), \ldots)$, if all the series
\[
\sum_{n=1}^{\infty} a(n), \quad S(a, b) \quad \text{and} \quad S(a, c)
\]
are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?
b) Do there exist three fast-growing sequences $b = (b_1, b_2, \ldots)$, $c = (c_1, c_2, \ldots)$, $d = (d_1, d_2, \ldots)$ such that for every sequence $a = (a(1), a(2), \ldots)$, if all the series
\[
S(a, b), \quad S(a, c) \quad \text{and} \quad S(a, d)
\]
are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?
1984 IMO Longlists, 68
In the Martian language every finite sequence of letters of the Latin alphabet letters is a word. The publisher “Martian Words” makes a collection of all words in many volumes. In the first volume there are only one-letter words, in the second, two-letter words, etc., and the numeration of the words in each of the volumes continues the numeration of the previous volume. Find the word whose numeration is equal to the sum of numerations of the words Prague, Olympiad, Mathematics.
2018 Iranian Geometry Olympiad, 4
There are two circles with centers $O_1,O_2$ lie inside of circle $\omega$ and are tangent to it. Chord $AB$ of $\omega$ is tangent to these two circles such that they lie on opposite sides of this chord. Prove that $\angle O_1AO_2 + \angle O_1BO_2 > 90^\circ$.
[i]Proposed by Iman Maghsoudi[/i]
2006 ISI B.Stat Entrance Exam, 10
Consider a function $f$ on nonnegative integers such that $f(0)=1, f(1)=0$ and $f(n)+f(n-1)=nf(n-1)+(n-1)f(n-2)$ for $n \ge 2$. Show that
\[\frac{f(n)}{n!}=\sum_{k=0}^n \frac{(-1)^k}{k!}\]
2007 Germany Team Selection Test, 1
Prove the inequality:
\[\sum_{i < j}{\frac {a_{i}a_{j}}{a_{i} \plus{} a_{j}}}\leq \frac {n}{2(a_{1} \plus{} a_{2} \plus{}\cdots \plus{} a_{n})}\cdot \sum_{i < j}{a_{i}a_{j}}\]
for positive reals $ a_{1},a_{2},\ldots,a_{n}$.
[i]Proposed by Dusan Dukic, Serbia[/i]
2022 Taiwan TST Round 1, 5
Let $H$ be the orthocenter of a given triangle $ABC$. Let $BH$ and $AC$ meet at a point $E$, and $CH$ and $AB$ meet at $F$. Suppose that $X$ is a point on the line $BC$. Also suppose that the circumcircle of triangle $BEX$ and the line $AB$ intersect again at $Y$, and the circumcircle of triangle $CFX$ and the line $AC$ intersect again at $Z$.
Show that the circumcircle of triangle $AYZ$ is tangent to the line $AH$.
[i]Proposed by usjl[/i]
1996 Mexico National Olympiad, 3
Prove that it is not possible to cover a $6\times 6$ square board with eighteen $2\times 1$ rectangles, in such a way that each of the lines going along the interior gridlines cuts at least one of the rectangles. Show also that it is possible to cover a $6\times 5$ rectangle with fifteen $2\times 1 $ rectangles so that the above condition is fulfilled.
1973 Putnam, A6
Prove that it is impossible for seven distinct straight lines to be situated in the euclidean plane so as to have at least six points where exactly three of these lines intersect and at least four points where exactly two of these lines intersect.
2007 Sharygin Geometry Olympiad, 10
Find the locus of centers of regular triangles such that three given points $A, B, C$ lie respectively on three lines containing sides of the triangle.
2010 Indonesia TST, 4
Prove that for all integers $ m$ and $ n$, the inequality
\[ \dfrac{\phi(\gcd(2^m \plus{} 1,2^n \plus{} 1))}{\gcd(\phi(2^m \plus{} 1),\phi(2^n \plus{} 1))} \ge \dfrac{2\gcd(m,n)}{2^{\gcd(m,n)}}\]
holds.
[i]Nanang Susyanto, Jogjakarta [/i]
2009 AMC 12/AHSME, 6
Suppose that $ P\equal{}2^m$ and $ Q\equal{}3^n$. Which of the following is equal to $ 12^{mn}$ for every pair of integers $ (m,n)$?
$ \textbf{(A)}\ P^2Q \qquad
\textbf{(B)}\ P^nQ^m \qquad
\textbf{(C)}\ P^nQ^{2m} \qquad
\textbf{(D)}\ P^{2m}Q^n \qquad
\textbf{(E)}\ P^{2n}Q^m$
2004 AMC 12/AHSME, 18
Points $ A$ and $ B$ are on the parabola $ y \equal{} 4x^2 \plus{} 7x \minus{} 1$, and the origin is the midpoint of $ \overline{AB}$. What is the length of $ \overline{AB}$?
$ \textbf{(A)}\ 2\sqrt5 \qquad
\textbf{(B)}\ 5\plus{}\frac{\sqrt2}{2} \qquad
\textbf{(C)}\ 5\plus{}\sqrt2 \qquad
\textbf{(D)}\ 7 \qquad
\textbf{(E)}\ 5\sqrt2$
2000 Mongolian Mathematical Olympiad, Problem 2
Circles $\omega_1,\omega_2,\omega_3$ with centers $O_1,O_2,O_3$, respectively, are externally tangent to each other. The circle $\omega_1$ touches $\omega_2$ at $P_1$ and $\omega_3$ at $P_2$. For any point $A$ on $\omega_1$, $A_1$ denotes the point symmetric to $A$ with respect to $O_1$. Show that the intersection points of $AP_2$ with $\omega_3$, $A_1P_3$ with $\omega_2$, and $AP_3$ with $A_1P_2$ lie on a line.
2021 Alibaba Global Math Competition, 1
In a dance party initially there are $20$ girls and $22$ boys in the pool and infinitely many more girls and boys waiting outside. In each round, a participant is picked uniformly at random; if a girl is picked, then she invites a boy from the pool to dance and then both of them elave the party after the dance; while if a boy is picked, then he invites a girl and a boy from the waiting line and dance together. The three of them all stay after the dance. The party is over when there are only (two) boys left in the pool.
(a) What is the probability that the party never ends?
(b) Now the organizer of this party decides to reverse the rule, namely that if a girl is picked, then she invites a boy and a girl from the waiting line to dance and the three stay after the dance; while if a boy is picked, he invites a girl from the pool to dance and both leave after the dance. Still the party is over when there are only (two) boys left in the pool. What is the expected number of rounds until the party ends?
2013 Princeton University Math Competition, 4
Compute the smallest integer $n\geq 4$ such that $\textstyle\binom n4$ ends in $4$ or more zeroes (i.e. the rightmost four digits of $\textstyle\binom n4$ are $0000$).
2021 BMT, 19-21
[center][u]Guts Round[/u] / [u]Set 7[/u][/center]
[b]p19.[/b] Let $a$ be the answer to Problem 19, $b$ be the answer to Problem 20, and $c$ be the answer to Problem 21.
Compute the real value of $a$ such that $$\sqrt{a(101b + 1)} - 1 = \sqrt{b(c - 1)}+ 10\sqrt{(a - c)b}.$$
[b]p20.[/b] Let $a$ be the answer to Problem 19, $b$ be the answer to Problem 20, and $c$ be the answer to Problem 21.
For some triangle $\vartriangle ABC$, let $\omega$ and $\omega_A$ be the incircle and $A$-excircle with centers $I$ and $I_A$, respectively. Suppose $AC$ is tangent to $\omega$ and $\omega_A$ at $E$ and $E'$, respectively, and $AB$ is tangent to $\omega$ and $\omega_A$ at $F$ and $F'$ respectively. Furthermore, let $P$ and $Q$ be the intersections of $BI$ with $EF$ and $CI$ with $EF$, respectively, and let $P'$ and $Q'$ be the intersections of $BI_A$ with $E'F'$ and $CI_A$ with $E'F'$, respectively. Given that the circumradius of $\vartriangle ABC$ is a, compute the maximum integer value of $BC$ such that the area $[P QP'Q']$ is less than or equal to $1$.
[b]p21.[/b] Let $a$ be the answer to Problem 19, $b$ be the answer to Problem 20, and $c$ be the answer to Problem 21.
Let $c$ be a positive integer such that $gcd(b, c) = 1$. From each ordered pair $(x, y)$ such that $x$ and $y$ are both integers, we draw two lines through that point in the $x-y$ plane, one with slope $\frac{b}{c}$ and one with slope $-\frac{c}{b}$ . Given that the number of intersections of these lines in $[0, 1)^2$ is a square number, what is the smallest possible value of $ c$?
Note that $[0, 1)^2$ refers to all points $(x, y)$ such that $0 \le x < 1$ and $ 0 \le y < 1$.
2015 Caucasus Mathematical Olympiad, 5
Are there natural $a, b >1000$ , such that for any $c$ that is a perfect square, the three numbers $a, b$ and $c$ are not the lengths of the sides of a triangle?
2007 Today's Calculation Of Integral, 174
Let $a$ be a positive number. Assume that the parameterized curve $C: \ x=t+e^{at},\ y=-t+e^{at}\ (-\infty <t< \infty)$ is touched to $x$ axis.
(1) Find the value of $a.$
(2) Find the area of the part which is surrounded by two straight lines $y=0, y=x$ and the curve $C.$
1986 AMC 12/AHSME, 21
In the configuration below, $\theta$ is measured in radians, $C$ is the center of the circle, $BCD$ and $ACE$ are line segments and $AB$ is tangent to the circle at $A$.
[asy]
defaultpen(fontsize(10pt)+linewidth(.8pt));
pair A=(0,-1), E=(0,1), C=(0,0), D=dir(10), F=dir(190), B=(-1/sin(10*pi/180))*dir(10);
fill(Arc((0,0),1,10,90)--C--D--cycle,mediumgray);
fill(Arc((0,0),1,190,270)--B--F--cycle,mediumgray);
draw(unitcircle);
draw(A--B--D^^A--E);
label("$A$",A,S);
label("$B$",B,W);
label("$C$",C,SE);
label("$\theta$",C,SW);
label("$D$",D,NE);
label("$E$",E,N);
[/asy]
A necessary and sufficient condition for the equality of the two shaded areas, given $0 < \theta < \frac{\pi}{2}$, is
$ \textbf{(A)}\ \tan \theta = \theta\qquad\textbf{(B)}\ \tan \theta = 2\theta\qquad\textbf{(C)}\ \tan \theta = 4\theta\qquad\textbf{(D)}\ \tan 2\theta = \theta\qquad \\ \textbf{(E)}\ \tan \frac{\theta}{2} = \theta$
2022 AMC 10, 23
Isosceles trapezoid $ABCD$ has parallel sides $\overline{AD}$ and $\overline{BC},$ with $BC < AD$ and $AB = CD.$ There is a point $P$ in the plane such that $PA=1, PB=2, PC=3,$ and $PD=4.$ What is $\tfrac{BC}{AD}?$
$\textbf{(A) }\frac{1}{4}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{1}{2}\qquad\textbf{(D) }\frac{2}{3}\qquad\textbf{(E) }\frac{3}{4}$
2013 Argentina National Olympiad Level 2, 5
Each cell of an $n \times n$ board is colored either black or white. A coloring is called [i]good[/i] if every $2 \times 2$ square contains an even number of black cells, and every cross contains an odd number of black cells. Determine all $n \geqslant 3$ such that, in every good coloring, the four corner cells of the board are the same color.
[b]Note:[/b] Each $2 \times 2$ square contains exactly $4$ cells of the board. Each cross contains exactly $5$ cells of the board.
[asy]
size(5cm);
// Function to draw a filled square centered at a given position
void drawFilledSquare(pair center, real sideLength) {
real halfSide = sideLength / 2;
fill(shift(center) * box((-halfSide, -halfSide), (halfSide, halfSide)), lightgray);
draw(shift(center) * box((-halfSide, -halfSide), (halfSide, halfSide)));
}
// Side length of each square
real sideLength = 1;
// Coordinates for the cross (left shape)
pair[] crossPositions = {
(0, 0), (-1, 0), (1, 0), (0, -1), (0, 1)
};
// Coordinates for the square (right shape)
pair[] squarePositions = {
(3, -0.5), (3, 0.5), (4, -0.5), (4, 0.5)
};
// Draw the cross
for (pair pos : crossPositions) {
drawFilledSquare(pos, sideLength);
}
// Draw the square
for (pair pos : squarePositions) {
drawFilledSquare(pos, sideLength);
}
[/asy]
1993 Dutch Mathematical Olympiad, 2
In a triangle $ ABC$ with $ \angle A\equal{}90^{\circ}$, $ D$ is the midpoint of $ BC$, $ F$ that of $ AB$, $ E$ that of $ AF$ and $ G$ that of $ FB$. Segment $ AD$ intersects $ CE,CF$ and $ CG$ in $ P,Q$ and $ R$, respectively. Determine the ratio: $ \frac{PQ}{QR}$.
2014 May Olympiad, 1
The road that goes from the town to the mountain cottage is $76$ km long. A group of hikers finished it in $10$ days, never travelling more than $16$ km in two consecutive days, but travelling at least $23$ km in three consecutive days. Find the maximum ammount of kilometers that the hikers may have traveled in one day.