This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1986 IMO Longlists, 30

Prove that a convex polyhedron all of whose faces are equilateral triangles has at most $30$ edges.

2012 Tournament of Towns, 6

(a) A point $A$ is marked inside a sphere. Three perpendicular lines drawn through $A$ intersect the sphere at six points. Prove that the centre of gravity of these six points does not depend on the choice of such three lines. (b) An icosahedron with the centre $A$ is placed inside a sphere (its centre does not necessarily coincide with the centre of the sphere). The rays going from $A$ to the vertices of the icosahedron mark $12$ points on the sphere. Then the icosahedron is rotated about its centre. New rays mark new $12$ points on the sphere. Let $O$ and $N$ be the centres of mass of old and new points respectively. Prove that $O = N$.

2006 AMC 12/AHSME, 20

A bug starts at one vertex of a cube and moves along the edges of the cube according to the following rule. At each vertex the bug will choose to travel along one of the three edges emanating from that vertex. Each edge has equal probability of being chosen, and all choices are independent. What is the probability that after seven moves the bug will have visited every vertex exactly once? $ \textbf{(A) } \frac {1}{2187} \qquad \textbf{(B) } \frac {1}{729} \qquad \textbf{(C) } \frac {2}{243} \qquad \textbf{(D) } \frac {1}{81} \qquad \textbf{(E) } \frac {5}{243}$

1964 IMO, 6

In tetrahedron $ABCD$, vertex $D$ is connected with $D_0$, the centrod if $\triangle ABC$. Line parallel to $DD_0$ are drawn through $A,B$ and $C$. These lines intersect the planes $BCD, CAD$ and $ABD$ in points $A_2, B_1,$ and $C_1$, respectively. Prove that the volume of $ABCD$ is one third the volume of $A_1B_1C_1D_0$. Is the result if point $D_o$ is selected anywhere within $\triangle ABC$?

2002 Tournament Of Towns, 2

A cube is cut by a plane such that the cross section is a pentagon. Show there is a side of the pentagon of length $\ell$ such that the inequality holds: \[ |\ell-1|>\frac{1}{5} \]

1993 Polish MO Finals, 3

Find out whether it is possible to determine the volume of a tetrahedron knowing the areas of its faces and its circumradius.

2011 India IMO Training Camp, 1

Find all positive integer $n$ satisfying the conditions $a)n^2=(a+1)^3-a^3$ $b)2n+119$ is a perfect square.

2003 Romania National Olympiad, 1

Let be a tetahedron $ OABC $ with $ OA\perp OB\perp OC\perp OA. $ Show that $$ OH\le r\left( 1+\sqrt 3 \right) , $$ where $ H $ is the orthocenter of $ ABC $ and $ r $ is radius of the inscribed spere of $ OABC. $ [i]Valentin Vornicu[/i]

1992 IMO Longlists, 38

Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$. [hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]

1961 Polish MO Finals, 3

Prove that if a plane section of a tetrahedron is a parallelogram, then half of its perimeter is contained between the length of the smallest and the length of the largest edge of the tetrahedron.

1991 Arnold's Trivium, 17

Find the distance of the centre of gravity of a uniform $100$-dimensional solid hemisphere of radius $1$ from the centre of the sphere with $10\%$ relative error.

1994 Abels Math Contest (Norwegian MO), 1a

In a half-ball of radius $3$ is inscribed a cylinder with base lying on the base plane of the half-ball, and another such cylinder with equal volume. If the base-radius of the first cylinder is $\sqrt3$, what is the base-radius of the other one?

2017 Moscow Mathematical Olympiad, 5

$8$ points lie on the faces of unit cube and form another cube. What can be length of edge of this cube?

1950 Polish MO Finals, 3

Prove that if the two altitudes of a tetrahedron intersect, then the other two atltitudes intersect also.

2016 CCA Math Bonanza, T7

A [i]cuboctahedron[/i], shown below, is a polyhedron with 8 equilateral triangle faces and 6 square faces. Each edge has the same length and each of the 24 vertices borders 2 squares and 2 triangles. An \textit{octahedron} is a regular polyhedron with 6 vertices and 8 equilateral triangle faces. Compute the sum of the volumes of an octahedron with side length 5 and a cuboctahedron with side length 5. [img]http://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvMi82LzBmNjM1OTM2M2ExYTQzOTFhODEwODkwM2FiYmM1MTljOGQzNmJhLmpwZw==&rn=Q3Vib2N0YWhlZHJvbi5qcGc=[/img] [i]2016 CCA Math Bonanza Team #7[/i]

2024 May Olympiad, 4

A castaway is building a rectangular raft $ABCD$. He fixes a mast perpendicular to the raft, with ropes passing from the top of the mast (point $S$ in the figure) to the four corners of the raft. The rope $SA$ measures $8$ meters, the rope $SB$ measures $2$ meters and the rope $SC$ measures $14$ meters. Compute the length of the rope $SD$. [asy] size(250); // Coordinates for the parallelogram ABCD pair A = (0, 0); pair B = (8, 0); pair C = (10, 5); pair D = (2, 5); // Position of point S (outside the parallelogram) pair S = (5, 8); pair T = (5, 3); // Draw the parallelogram ABCD filldraw(A--B--C--D--cycle, lightgray, black); // Draw the ropes from point S to each corner of the parallelogram draw(S--A, blue); draw(S--B, blue); draw(S--C, blue); draw(S--D, blue); draw(S--T, black); // Mark the points dot(A); dot(B); dot(C); dot(D); dot(S); dot(T); // Label the points label("A", A, SW); label("B", B, SE); label("C", C, NE); label("D", D, NW); label("S", S, N); [/asy]

1963 Vietnam National Olympiad, 4

The tetrahedron $ S.ABC$ has the faces $ SBC$ and $ ABC$ perpendicular. The three angles at $ S$ are all $ 60^{\circ}$ and $ SB \equal{} SC \equal{} 1$. Find the volume of the tetrahedron.

2017 China Team Selection Test, 1

Find out the maximum value of the numbers of edges of a solid regular octahedron that we can see from a point out of the regular octahedron.(We define we can see an edge $AB$ of the regular octahedron from point $P$ outside if and only if the intersection of non degenerate triangle $PAB$ and the solid regular octahedron is exactly edge $AB$.

1990 AMC 8, 11

The numbers on the faces of this cube are consecutive whole numbers. The sums of the two numbers on each of the three pairs of opposite faces are equal. The sum of the six numbers on this cube is [asy] draw((0,0)--(3,0)--(3,3)--(0,3)--cycle); draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3)); draw((3,3)--(5,5)); label("$15$",(1.5,1.2),N); label("$11$",(4,2.3),N); label("$14$",(2.5,3.7),N);[/asy] $ \text{(A)}\ 75\qquad\text{(B)}\ 76\qquad\text{(C)}\ 78\qquad\text{(D)}\ 80\qquad\text{(E)}\ 81 $

2015 AIME Problems, 15

Tags: 3d geometry
A block of wood has the shape of a right circular cylinder with radius $6$ and height $8$, and its entire surface has been painted blue. Points $A$ and $B$ are chosen on the edge on one of the circular faces of the cylinder so that $\overarc{AB}$ on that face measures $120^\circ$. The block is then sliced in half along the plane that passes through point $A$, point $B$, and the center of the cylinder, revealing a flat, unpainted face on each half. The area of one of those unpainted faces is $a\cdot\pi + b\sqrt{c}$, where $a$, $b$, and $c$ are integers and $c$ is not divisible by the square of any prime. Find $a+b+c$. [asy]import three; import solids; size(8cm); currentprojection=orthographic(-1,-5,3); picture lpic, rpic; size(lpic,5cm); draw(lpic,surface(revolution((0,0,0),(-3,3*sqrt(3),0)..(0,6,4)..(3,3*sqrt(3),8),Z,0,120)),gray(0.7),nolight); draw(lpic,surface(revolution((0,0,0),(-3*sqrt(3),-3,8)..(-6,0,4)..(-3*sqrt(3),3,0),Z,0,90)),gray(0.7),nolight); draw(lpic,surface((3,3*sqrt(3),8)..(-6,0,8)..(3,-3*sqrt(3),8)--cycle),gray(0.7),nolight); draw(lpic,(3,-3*sqrt(3),8)..(-6,0,8)..(3,3*sqrt(3),8)); draw(lpic,(-3,3*sqrt(3),0)--(-3,-3*sqrt(3),0),dashed); draw(lpic,(3,3*sqrt(3),8)..(0,6,4)..(-3,3*sqrt(3),0)--(-3,3*sqrt(3),0)..(-3*sqrt(3),3,0)..(-6,0,0),dashed); draw(lpic,(3,3*sqrt(3),8)--(3,-3*sqrt(3),8)..(0,-6,4)..(-3,-3*sqrt(3),0)--(-3,-3*sqrt(3),0)..(-3*sqrt(3),-3,0)..(-6,0,0)); draw(lpic,(6*cos(atan(-1/5)+3.14159),6*sin(atan(-1/5)+3.14159),0)--(6*cos(atan(-1/5)+3.14159),6*sin(atan(-1/5)+3.14159),8)); size(rpic,5cm); draw(rpic,surface(revolution((0,0,0),(3,3*sqrt(3),8)..(0,6,4)..(-3,3*sqrt(3),0),Z,230,360)),gray(0.7),nolight); draw(rpic,surface((-3,3*sqrt(3),0)..(6,0,0)..(-3,-3*sqrt(3),0)--cycle),gray(0.7),nolight); draw(rpic,surface((-3,3*sqrt(3),0)..(0,6,4)..(3,3*sqrt(3),8)--(3,3*sqrt(3),8)--(3,-3*sqrt(3),8)--(3,-3*sqrt(3),8)..(0,-6,4)..(-3,-3*sqrt(3),0)--cycle),white,nolight); draw(rpic,(-3,-3*sqrt(3),0)..(-6*cos(atan(-1/5)+3.14159),-6*sin(atan(-1/5)+3.14159),0)..(6,0,0)); draw(rpic,(-6*cos(atan(-1/5)+3.14159),-6*sin(atan(-1/5)+3.14159),0)..(6,0,0)..(-3,3*sqrt(3),0),dashed); draw(rpic,(3,3*sqrt(3),8)--(3,-3*sqrt(3),8)); draw(rpic,(-3,3*sqrt(3),0)..(0,6,4)..(3,3*sqrt(3),8)--(3,3*sqrt(3),8)..(3*sqrt(3),3,8)..(6,0,8)); draw(rpic,(-3,3*sqrt(3),0)--(-3,-3*sqrt(3),0)..(0,-6,4)..(3,-3*sqrt(3),8)--(3,-3*sqrt(3),8)..(3*sqrt(3),-3,8)..(6,0,8)); draw(rpic,(-6*cos(atan(-1/5)+3.14159),-6*sin(atan(-1/5)+3.14159),0)--(-6*cos(atan(-1/5)+3.14159),-6*sin(atan(-1/5)+3.14159),8)); label(rpic,"$A$",(-3,3*sqrt(3),0),W); label(rpic,"$B$",(-3,-3*sqrt(3),0),W); add(lpic.fit(),(0,0)); add(rpic.fit(),(1,0));[/asy]

2001 AIME Problems, 12

A sphere is inscribed in the tetrahedron whose vertices are $A=(6,0,0), B=(0,4,0), C=(0,0,2),$ and $D=(0,0,0).$ The radius of the sphere is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2006 Putnam, B1

Show that the curve $x^{3}+3xy+y^{3}=1$ contains only one set of three distinct points, $A,B,$ and $C,$ which are the vertices of an equilateral triangle.

2007 AMC 12/AHSME, 20

Corners are sliced off a unit cube so that the six faces each become regular octagons. What is the total volume of the removed tetrahedra? $ \textbf{(A)}\ \frac {5\sqrt {2} \minus{} 7}{3}\qquad \textbf{(B)}\ \frac {10 \minus{} 7\sqrt {2}}{3}\qquad \textbf{(C)}\ \frac {3 \minus{} 2\sqrt {2}}{3}\qquad \textbf{(D)}\ \frac {8\sqrt {2} \minus{} 11}{3}\qquad \textbf{(E)}\ \frac {6 \minus{} 4\sqrt {2}}{3}$

1969 IMO Longlists, 26

$(GBR 3)$ A smooth solid consists of a right circular cylinder of height $h$ and base-radius $r$, surmounted by a hemisphere of radius $r$ and center $O.$ The solid stands on a horizontal table. One end of a string is attached to a point on the base. The string is stretched (initially being kept in the vertical plane) over the highest point of the solid and held down at the point $P$ on the hemisphere such that $OP$ makes an angle $\alpha$ with the horizontal. Show that if $\alpha$ is small enough, the string will slacken if slightly displaced and no longer remain in a vertical plane. If then pulled tight through $P$, show that it will cross the common circular section of the hemisphere and cylinder at a point $Q$ such that $\angle SOQ = \phi$, $S$ being where it initially crossed this section, and $\sin \phi = \frac{r \tan \alpha}{h}$.

1990 AMC 12/AHSME, 9

Each edge of a cube is colored either red or black. Every face of the cube has at least one black edge. The smallest possible number of black edges is $\textbf{(A) }2\qquad \textbf{(B) }3\qquad \textbf{(C) }4\qquad \textbf{(D) }5\qquad \textbf{(E) }6\qquad$