This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1977 IMO Shortlist, 14

Let $E$ be a finite set of points such that $E$ is not contained in a plane and no three points of $E$ are collinear. Show that at least one of the following alternatives holds: (i) $E$ contains five points that are vertices of a convex pyramid having no other points in common with $E;$ (ii) some plane contains exactly three points from $E.$

2012-2013 SDML (Middle School), 12

For what digit $A$ is the numeral $1AA$ a perfect square in base-$5$ and a perfect cube in base-$6$? $\text{(A) }0\qquad\text{(B) }1\qquad\text{(C) }2\qquad\text{(D) }3\qquad\text{(E) }4$

2009 Sharygin Geometry Olympiad, 8

Can the regular octahedron be inscribed into regular dodecahedron in such way that all vertices of octahedron be the vertices of dodecahedron? (B.Frenkin)

1956 Moscow Mathematical Olympiad, 341

$1956$ points are chosen in a cube with edge $13$. Is it possible to fit inside the cube a cube with edge $1$ that would not contain any of the selected points?

1980 Poland - Second Round, 3

There is a sphere $ K $ in space and points $ A, B $ outside the sphere such that the segment $ AB $ intersects the interior of the sphere. Prove that the set of points $ P $ for which the segments $ AP $ and $ BP $ are tangent to the sphere $ K $ is contained in a certain plane.

1961 IMO Shortlist, 6

Consider a plane $\epsilon$ and three non-collinear points $A,B,C$ on the same side of $\epsilon$; suppose the plane determined by these three points is not parallel to $\epsilon$. In plane $\epsilon$ take three arbitrary points $A',B',C'$. Let $L,M,N$ be the midpoints of segments $AA', BB', CC'$; Let $G$ be the centroid of the triangle $LMN$. (We will not consider positions of the points $A', B', C'$ such that the points $L,M,N$ do not form a triangle.) What is the locus of point $G$ as $A', B', C'$ range independently over the plane $\epsilon$?

2016 Sharygin Geometry Olympiad, P23

A sphere touches all edges of a tetrahedron. Let $a, b, c$ and d be the segments of the tangents to the sphere from the vertices of the tetrahedron. Is it true that that some of these segments necessarily form a triangle? (It is not obligatory to use all segments. The side of the triangle can be formed by two segments)

1990 AIME Problems, 1

The increasing sequence $2,3,5,6,7,10,11,\ldots$ consists of all positive integers that are neither the square nor the cube of a positive integer. Find the 500th term of this sequence.

2013-2014 SDML (High School), 8

A right rectangular prism is inscribed within a sphere. The total area of all the faces [of] the prism is $88$, and the total length of all its edges is $48$. What is the surface area of the sphere? $\text{(A) }40\pi\qquad\text{(B) }32\pi\sqrt{2}\qquad\text{(C) }48\pi\qquad\text{(D) }32\pi\sqrt{3}\qquad\text{(E) }56\pi$

1989 AIME Problems, 12

Let $ABCD$ be a tetrahedron with $AB=41$, $AC=7$, $AD=18$, $BC=36$, $BD=27$, and $CD=13$, as shown in the figure. Let $d$ be the distance between the midpoints of edges $AB$ and $CD$. Find $d^{2}$. [asy] pair C=origin, D=(4,11), A=(8,-5), B=(16,0); draw(A--B--C--D--B^^D--A--C); draw(midpoint(A--B)--midpoint(C--D), dashed); label("27", B--D, NE); label("41", A--B, SE); label("7", A--C, SW); label("$d$", midpoint(A--B)--midpoint(C--D), NE); label("18", (7,8), SW); label("13", (3,9), SW); pair point=(7,0); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D));[/asy]

2010 AMC 12/AHSME, 9

Let $ n$ be the smallest positive integer such that $ n$ is divisible by $ 20$, $ n^2$ is a perfect cube, and $ n^3$ is a perfect square. What is the number of digits of $ n$? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 7$

1988 Tournament Of Towns, (187) 4

Each face of a cube has been divided into four equal quarters and each quarter is painted with one of three available colours. Quarters with common sides are painted with different colours . Prove that each of the available colours was used in painting $8$ quarters.

1994 Poland - Second Round, 3

A plane passing through the center of a cube intersects the cube in a cyclic hexagon. Show that this hexagon is regular.

2007 Junior Balkan Team Selection Tests - Romania, 1

Find the positive integers $n$ with $n \geq 4$ such that $[\sqrt{n}]+1$ divides $n-1$ and $[\sqrt{n}]-1$ divides $n+1$. [hide="Remark"]This problem can be solved in a similar way with the one given at [url=http://www.mathlinks.ro/Forum/resources.php?c=1&cid=97&year=2006]Cono Sur Olympiad 2006[/url], problem 5.[/hide]

1913 Eotvos Mathematical Competition, 2

Let $O$ and $O'$ designate two dìagonally opposite vertices of a cube. Bisect those edges of the cube that contain neither of the points $O$ and $O'$. Prove that these midpoints of edges lie in a plane and form the vertices of a regular hexagon

1982 Tournament Of Towns, (030) 4

(a) $K_1,K_2,..., K_n$ are the feet of the perpendiculars from an arbitrary point $M$ inside a given regular $n$-gon to its sides (or sides produced). Prove that the sum $\overrightarrow{MK_1} + \overrightarrow{MK_2} + ... + \overrightarrow{MK_n}$ equals $\frac{n}{2}\overrightarrow{MO}$, where $O$ is the centre of the $n$-gon. (b) Prove that the sum of the vectors whose origin is an arbitrary point $M$ inside a given regular tetrahedron and whose endpoints are the feet of the perpendiculars from $M$ to the faces of the tetrahedron equals $\frac43 \overrightarrow{MO}$, where $O$ is the centre of the tetrahedron. (VV Prasolov, Moscow)

2002 Swedish Mathematical Competition, 6

A tetrahedron has five edges of length $3$ and circumradius $2$. What is the length of the sixth edge?

1962 Vietnam National Olympiad, 4

Let be given a tetrahedron $ ABCD$ such that triangle $ BCD$ equilateral and $ AB \equal{} AC \equal{} AD$. The height is $ h$ and the angle between two planes $ ABC$ and $ BCD$ is $ \alpha$. The point $ X$ is taken on $ AB$ such that the plane $ XCD$ is perpendicular to $ AB$. Find the volume of the tetrahedron $ XBCD$.

2000 Iran MO (2nd round), 2

In a tetrahedron we know that sum of angles of all vertices is $180^\circ.$ (e.g. for vertex $A$, we have $\angle BAC + \angle CAD + \angle DAB=180^\circ.$) Prove that faces of this tetrahedron are four congruent triangles.

1994 Brazil National Olympiad, 1

The edges of a cube are labeled from 1 to 12 in an arbitrary manner. Show that it is not possible to get the sum of the edges at each vertex the same. Show that we can get eight vertices with the same sum if one of the labels is changed to 13.

1984 Austrian-Polish Competition, 1

Prove that if the feet of the altitudes of a tetrahedron are the incenters of the corresponding faces, then the tetrahedron is regular.

2012 Gulf Math Olympiad, 4

Fawzi cuts a spherical cheese completely into (at least three) slices of equal thickness. He starts at one end, making successive parallel cuts, working through the cheese until the slicing is complete. The discs exposed by the first two cuts have integral areas. [list](i) Prove that all the discs that he cuts have integral areas. (ii) Prove that the original sphere had integral surface area if, and only if, the area of the second disc that he exposes is even.[/list]

Maryland University HSMC part II, 2015

[b]p1.[/b] Nine coins are placed in a row, alternating between heads and tails as follows: $H T H T H T H T H$. A legal move consists of turning over any two adjacent coins. (a) Give a sequence of legal moves that changes the configuration into $H H H H H H H H H$. (b) Prove that there is no sequence of legal moves that changes the original configuration into $T T T T T T T T T$. [b]p2.[/b] Find (with proof) all integers $k $that satisfy the equation $$\frac{k - 15}{2000}+\frac{k - 12}{2003}+\frac{k - 9}{2006}+\frac{k - 6}{2009}+\frac{k - 3}{2012} = \frac{k - 2000}{15}+\frac{k - 2003}{12}+\frac{k - 2006}{9}+\frac{k - 2009}{6}+\frac{k - 2012}{3}.$$ [b]p3.[/b] Some (not necessarily distinct) natural numbers from $1$ to $2015$ are written on $2015$ lottery tickets, with exactly one number written on each ticket. It is known that the sum of the numbers on any nonempty subset of tickets (including the set of all tickets) is not divisible by $2016$. Prove that the same number is written on all of the tickets. [b]p4.[/b] A set of points $A$ is called distance-distinct if every pair of points in $A$ has a different distance. (a) Show that for all infinite sets of points $B$ on the real line, there exists an infinite distance-distinct set A contained in $B$. (b) Show that for all infinite sets of points $B$ on the real plane, there exists an infinite distance-distinct set A contained in $B$. [b]p5.[/b] Let $ABCD$ be a (not necessarily regular) tetrahedron and consider six points $E, F, G, H, I, J$ on its edges $AB$, $BC$, $AC$, $AD$, $BD$, $CD$, respectively, such that $$|AE| \cdot |EB| = |BF| \cdot |FC| = |AG| \cdot |GC| = |AH| \cdot |HD| = |BI| \cdot |ID| = |CJ| \cdot |JD|.$$ Prove that the points $E, F, G, H, I$, and $J$ lie on the surface of a sphere. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1979 Miklós Schweitzer, 7

Let $ T$ be a triangulation of an $ n$-dimensional sphere, and to each vertex of $ T$ let us assign a nonzero vector of a linear space $ V$. Show that if $ T$ has an $ n$-dimensional simplex such that the vectors assigned to the vertices of this simplex are linearly independent, then another such simplex must also exist. [i]L. Lovasz[/i]

1982 All Soviet Union Mathematical Olympiad, 334

Given a point $M$ inside a right tetrahedron. Prove that at least one tetrahedron edge is seen from the $M$ in an angle, that has a cosine not greater than $-1/3$. (e.g. if $A$ and $B$ are the vertices, corresponding to that edge, $cos(\widehat{AMB}) \le -1/3$)