Found problems: 2265
2000 IMO Shortlist, 2
A staircase-brick with 3 steps of width 2 is made of 12 unit cubes. Determine all integers $ n$ for which it is possible to build a cube of side $ n$ using such bricks.
1981 Bulgaria National Olympiad, Problem 3
A quadrilateral pyramid is cut by a plane parallel to the base. Suppose that a sphere $S$ is circumscribed and a sphere $\Sigma$ inscribed in the obtained solid, and moreover that the line through the centers of these two spheres is perpendicular to the base of the pyramid. Show that the pyramid is regular.
2002 National Olympiad First Round, 8
Which of the following polynomials does not divide $x^{60} - 1$?
$
\textbf{a)}\ x^2+x+1
\qquad\textbf{b)}\ x^4-1
\qquad\textbf{c)}\ x^5-1
\qquad\textbf{d)}\ x^{15}-1
\qquad\textbf{e)}\ \text{None of above}
$
1991 ITAMO, 5
For which values of $n$ does there exist a convex polyhedron with $n$ edges?
2011 ISI B.Math Entrance Exam, 2
Given two cubes $R$ and $S$ with integer sides of lengths $r$ and $s$ units respectively . If the difference between volumes of the two cubes is equal to the difference in their surface areas , then prove that $r=s$.
1977 IMO Longlists, 56
The four circumcircles of the four faces of a tetrahedron have equal radii. Prove that the four faces of the tetrahedron are congruent triangles.
1976 Poland - Second Round, 3
We consider a spherical bowl without any great circle. The distance between points $A$ and $B$ on such a bowl is defined as the length of the arc of the great circle of the sphere with ends at points $A$ and $B$, which is contained in the bowl. Prove that there is no isometry mapping this bowl to a subset of the plane.
Attention. A spherical bowl is each of the two parts into which the surface of the sphere is divided by a plane intersecting the sphere.
1969 IMO Shortlist, 55
For each of $k=1,2,3,4,5$ find necessary and sufficient conditions on $a>0$ such that there exists a tetrahedron with $k$ edges length $a$ and the remainder length $1$.
2015 AMC 12/AHSME, 16
Tetrahedron $ABCD$ has $AB=5$, $AC=3$, $BC=4$, $BD=4$, $AD=3$, and $CD=\tfrac{12}5\sqrt2$. What is the volume of the tetrahedron?
$\textbf{(A) }3\sqrt2\qquad\textbf{(B) }2\sqrt5\qquad\textbf{(C) }\dfrac{24}5\qquad\textbf{(D) }3\sqrt3\qquad\textbf{(E) }\dfrac{24}5\sqrt2$
2024 All-Russian Olympiad, 1
We are given an infinite cylinder in space (i.e. the locus of points of a given distance $R>0$ from a given straight line). Can six straight lines containing the edges of a tetrahedron all have exactly one common point with this cylinder?
[i]Proposed by A. Kuznetsov[/i]
1988 ITAMO, 6
The edge lengths of the base of a tetrahedron are $a,b,c$, and the lateral edge lengths are $x,y,z$. If $d$ is the distance from the top vertex to the centroid of the base, prove that $x+y+z \le a+b+c+3d$.
2009 Harvard-MIT Mathematics Tournament, 6
The corner of a unit cube is chopped off such that the cut runs through the three vertices adjacent to the vertex of the chosen corner. What is the height of the cube when the freshly-cut face is placed on a table?
2007 ITest, 37
Rob is helping to build the set for a school play. For one scene, he needs to build a multi-colored tetrahedron out of cloth and bamboo. He begins by fitting three lengths of bamboo together, such that they meet at the same point, and each pair of bamboo rods meet at a right angle. Three more lengths of bamboo are then cut to connect the other ends of the first three rods. Rob then cuts out four triangular pieces of fabric: a blue piece, a red piece, a green piece, and a yellow piece. These triangular pieces of fabric just fill in the triangular spaces between the bamboo, making up the four faces of the tetrahedron. The areas in square feet of the red, yellow, and green pieces are $60$, $20$, and $15$ respectively. If the blue piece is the largest of the four sides, find the number of square feet in its area.
2015 CCA Math Bonanza, I1
Michael the Mouse finds a block of cheese in the shape of a regular tetrahedron (a pyramid with equilateral triangles for all faces). He cuts some cheese off each corner with a sharp knife. How many faces does the resulting solid have?
[i]2015 CCA Math Bonanza Individual Round #1[/i]
2006 Sharygin Geometry Olympiad, 10.5
Can a tetrahedron scan turn out to be a triangle with sides $3, 4$ and $5$ (a tetrahedron can be cut only along the edges)?
1991 IberoAmerican, 1
Each vertex of a cube is assigned an 1 or a -1, and each face is assigned the product of the numbers assigned to its vertices. Determine the possible values the sum of these 14 numbers can attain.
2023 CCA Math Bonanza, TB2
How many ways are there to color a tetrahedron’s faces, edges, and vertices in red, green, and blue so that no face shares a color with any of its edges, and no edge shares a color with any of its endpoints? (Rotations and reflections are considered distinct.)
[i]Tiebreaker #2[/i]
2008 Oral Moscow Geometry Olympiad, 5
There are two shawls, one in the shape of a square, the other in the shape of a regular triangle, and their perimeters are the same. Is there a polyhedron that can be completely pasted over with these two shawls without overlap (shawls can be bent, but not cut)?
(S. Markelov).
1948 Kurschak Competition, 2
A convex polyhedron has no diagonals (every pair of vertices are connected by an edge). Prove that it is a tetrahedron.
2013 Tuymaada Olympiad, 7
Points $A_1$, $A_2$, $A_3$, $A_4$ are the vertices of a regular tetrahedron of edge length $1$. The points $B_1$ and $B_2$ lie inside the figure bounded by the plane $A_1A_2A_3$ and the spheres of radius $1$ and centres $A_1$, $A_2$, $A_3$.
Prove that $B_1B_2 < \max\{B_1A_1, B_1A_2, B_1A_3, B_1A_4\}$.
[i] A. Kupavsky [/i]
1960 IMO, 5
Consider the cube $ABCDA'B'C'D'$ (with face $ABCD$ directly above face $A'B'C'D'$).
a) Find the locus of the midpoints of the segments $XY$, where $X$ is any point of $AC$ and $Y$ is any piont of $B'D'$;
b) Find the locus of points $Z$ which lie on the segment $XY$ of part a) with $ZY=2XZ$.
2013 F = Ma, 12
A spherical shell of mass $M$ and radius $R$ is completely filled with a frictionless fluid, also of mass M. It is released from rest, and then it rolls without slipping down an incline that makes an angle $\theta$ with the horizontal. What will be the acceleration of the shell down the incline just after it is released? Assume the acceleration of free fall is $g$. The moment of inertia of a thin shell of radius $r$ and mass $m$ about the center of mass is $I = \frac{2}{3}mr^2$; the momentof inertia of a solid sphere of radius r and mass m about the center of mass is $I = \frac{2}{5}mr^2$.
$\textbf{(A) } g \sin \theta \\
\textbf{(B) } \frac{3}{4} g \sin \theta\\
\textbf{(C) } \frac{1}{2} g \sin \theta\\
\textbf{(D) } \frac{3}{8} g \sin \theta\\
\textbf{(E) } \frac{3}{5} g \sin \theta$
1991 IMTS, 5
Show that it is impossible to dissect an arbitary tetrahedron into six parts by planes or portions thereof so that each of the parts has a plane of symmetry.
2007 Princeton University Math Competition, 6
Joe has $1729$ randomly oriented and randomly arranged unit cubes, which are initially unpainted. He makes two cubes of sidelengths $9$ and $10$ or of sidelengths $1$ and $12$ (randomly chosen). These cubes are dipped into white paint. Then two more cubes of sidelengths $1$ and $12$ or $9$ and $10$ are formed from the same unit cubes, again randomly oriented and randomly arranged, and dipped into paint. Joe continues this process until every side of every unit cube is painted. After how many times of doing this is the expected number of painted faces closest to half of the total?
1957 Moscow Mathematical Olympiad, 358
The segments of a closed broken line in space are of equal length, and each three consecutive segments are mutually perpendicular. Prove that the number of segments is divisible by $6$.